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abstract: Density-structured models are structured population
models in which the state variable is the proportion of populations
or sites in a small number of discrete density states. Although such
models have rarely been used, they have the advantage that they are
straightforward to parameterize, make few assumptions about pop-
ulation dynamics, and permit rapid data collection using coarse den-
sity assessment. In this article, we highlight their use in relating
population dynamics to environmental variation and their robustness
to measurement error. We show that density-structured models are
able to accurately represent population dynamics under a wide range
of conditions. We look at the effects of including a persistent seed-
bank and describe numerical approximations for the mean and var-
iance of population size. For simulated data, we determine the extent
to which the underlying continuous process may be inferred from
density-structured data. Finally, we discuss issues of parameter es-
timation and applications for which these types of models may be
useful.

Keywords: population dynamics, structured model, measurement er-
ror, annual plants.

Introduction

Population models are key tools in ecology (Maynard
Smith 1973; May 1974, 1989; Sutherland 1996; Hilborn
and Mangel 1997; Lande et al. 2003; Bolker 2008). Models
serve a range of functions, including predicting whether
populations of conservation concern are able to persist
(Lande et al. 2003), whether control measures will erad-
icate pest species (e.g., Firbank and Watkinson 1986; Rees
and Paynter 1997), or how populations might respond to
changes in the environment (Ranta et al. 2006). A variety
of data sources may be used to generate population mod-
els, ranging from data on individual performance and fit-
ness (e.g., Pacala et al. 1996; Sutherland 1996) to long-
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term census data (Dennis and Taper 1994; Rees et al. 1996;
Sibly et al. 2005, 2007).

Although modeling is the focus of many studies in ap-
plied ecology, a critical limitation in many, if not most,
applications is that it is difficult to generate estimates of
the spatiotemporal variation in key parameters (May 1989;
Freckleton and Watkinson 1998; Sæther et al. 2007; Grøtan
et al. 2008), and consequently it is difficult to apply models
at large scales. Developing methodologies that allow us to
deal with these problems is an important challenge (Lande
et al. 2003; Clark and Bjørnstad 2004).

Several types of population model are commonly em-
ployed in the literature. The most commonly used models
are simple differential and difference equations predicting
changes in population size as a function of a small number
of parameters (e.g., see Hassell 1975; Watkinson 1980;
Royama 1992; Lande et al. 2003). Such models can be used
as tools to explore population dynamics in theoretical anal-
yses (e.g., May 1974), but they can also be parameterized
with field data and used to describe or predict population
dynamics (e.g., Rees et al. 1996; Freckleton et al. 2000;
Sibly et al. 2005). More complex models include structured
models, such as Leslie and Lefkovitch matrix models for
age- or stage-structured populations (e.g., Caswell 2000).
More recently, integral projection models have been de-
veloped for modeling populations in which growth and
survival are size dependent (Easterling et al. 2000; Ellner
and Rees 2007).

When detailed data on individual performance and sur-
vival are available, it is possible to build up models based
on a detailed understanding of the various processes that
occur in the life cycle and drive population dynamics (e.g.,
Pacala et al. 1996; Sutherland 1996; Stephens et al. 2005).
The drawback is that frequently the information is not
available for such modeling. It is more common that an-
nual census data have been collected, and these can be
used as the basis for parameterizing regression models with
less detail but at longer and larger scales.

http://www.journals.uchicago.edu/doi/full/10.1086/657621
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As noted above, whatever approach is used, a key lim-
itation in developing models for population dynamics is
that more often than not, insufficient data are available
for estimating the variance in model parameters. Large-
scale census data are important in this regard, as such data
sets potentially allow the spatiotemporal variation in pop-
ulation dynamics to be quantified and related to environ-
mental drivers (Clark and Bjørnstad 2004; Sæther et al.
2007). However, there are complications with this ap-
proach: measurement error can be a significant component
of the variation in long-term ecological data sets. Specif-
ically, errors in estimates of population density can lead
to analyses yielding biased estimates of model parameters.
For example, the strength of density dependence may be
overestimated, resulting in erroneous predictions of mean
population size (Shenk et al. 1998; Freckleton et al. 2006;
Green 2008) or possible underestimates of the effects of
environmental predictors (e.g., Pablo Almaraz et al., un-
published manuscript).

The considerations described above are extremely im-
portant for the design of long-term monitoring programs.
There is, unsurprisingly, a trade-off to be considered be-
tween balancing the extent and amount of data collected
and the precision or resolution of data collection. More
detailed data—for instance, on the fates of individuals and
measuring the various demographic processes determining
population growth with quantified errors—will yield more
reliable models. However, such data are more expensive
and time-consuming to collect. On the other hand, rapidly
collected data with less precision or resolution can achieve
a broader coverage but will yield less resolved or detailed
predictions.

In a study attempting to model the population growth
and control of an alien species, Taylor and Hastings (2004)
used a “density-structured” model. This model was some-
what of a departure from previous models for population
dynamics, in that the state variable in this model was a
discrete density state. In their model, this was a simple
assignment of the state of a site as “low,” “medium,” or
“high.” The model then simply modeled the rate at which
sites move between these density states, with the param-
eters of the model implicitly being a matrix of transition
probabilities (see also Moore and Noble 1990; Bogich and
Shea 2008). In previous applications, such models have
used either these three density states or presence/absence
as the state variables.

This might, at first sight, appear to be a somewhat crude
approach to modeling, in that population dynamics are
not modeled explicitly but rather are summarized by
coarse transition probabilities. However, this modeling
framework offers some empirical and analytical advan-
tages. In empirical terms, there are two key advantages:
first, the data for parameterizing a density-structured

model should be relatively easy to collect, because the
density states should be easier and quicker to assign than
detailed enumeration of population densities; and second,
census errors in the data are straightforward to assess via
replicated surveys, which should be relatively quick and
easy to perform. In analytical terms, these models offer
three advantages: (1) the transition probabilities should be
statistically straightforward to estimate; (2) analysis is sim-
plified if it is not necessary to specify an underlying model
for population dynamics (e.g., Ellner et al. 2002): in this
case, because the model is defined purely by the estimated
probabilities, it is not necessarily to specify any functions
describing the underlying mechanisms driving population
dynamics; and (3) the model is a simple linear one, which
means that it has well-understood properties because it is
a special case of a structured model, for which a great deal
of theory exists (Caswell 2000).

Apart from the simplification of population dynamics,
there are potential drawbacks to this approach. One ob-
vious issue is whether population dynamics can be ap-
proximated accurately enough for predictions to be useful.
For instance, when considering size-structured models,
Easterling et al. (2000) pointed out that matrix models
with small numbers of discrete states could potentially
provide a misleading description of population dynamics
because over several generations individuals are predicted
to move too quickly between successive states. This is an
artifact of the classification into discrete states and can be
dealt with by using an alternative approach that uses a
continuous state variable (Easterling et al. 2000; Ellner and
Rees 2006, 2007). It seems possible that such artifacts could
occur in models structured by density; however, the extent
of such effects is uncertain.

The density-structured approach to modeling has not
been used a great deal in modeling to date, which seems
surprising, given its potential. In this article, we highlight
density-structured models and their possible application
to problems in population modeling. We show that they
are not crude approximations but, under reasonable as-
sumptions, accurate descriptions of population dynamics
and population structure. They can be used to provide
accurate estimates of the mean and variance of population
sizes, and even for models with a few states, the underlying
stationary distribution of population size can be retrieved.
Finally, we look at the degree to which the underlying
continuous dynamics can be retrieved from discrete den-
sity state data.

Methods

We begin by outlining a simple demographic model for
the population dynamics of an annual plant in a stochastic
environment both without and with a seedbank. Using
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this model as an example, we then describe the formu-
lation of a density-structured model from a continuous
model and describe how we derive numerical approxi-
mations for the stationary distribution of population size,
mean and variance of population size, and population
growth rates. Finally, we ask, given a density-structured
data set or model, can we expect to be able to recover
estimates of the parameters of the continuous population
model?

Difference Equation Model

The starting point is a conventional model for population
dynamics based on a difference equation relating popu-
lation size (measured as a continuous variable) in one year
to that in the previous year. The general model is

N(t � 1) p l(t)N(t)f(N(t)) (1)

(e.g., Maynard Smith 1973; May 1974; Hassell 1975; May
and Oster 1976; Watkinson 1980). Here N is population
size measured at times t and , l is the finite rate oft � 1
population increase from low densities, and f() is a func-
tion describing the effects of density dependence on pop-
ulation growth. In this equation, l is written as a function
of t to denote that it is a stochastic variable. To model
density dependence, we employed the following form for
f():

�bf(N) p (1 � aN) (2)

(Hassell 1975; Watkinson 1980), where a is a parameter
scaling the strength of density dependence and b char-
acterizes whether the density response is undercompen-
sating ( ), compensating ( ), or overcompensat-b ! 1 b p 1
ing ( ).b 1 1

In many plant species, there is a persistent seedbank.
In this case, the model for population dynamics is more
complex. A simple model, assuming no age dependence
in the seedbank, is

s(t � 1) p q(t)(1 � g(t))s(t) � s N(t)f(N(t)),m

N(t � 1) p g(t � 1)s(t � 1)

p q(t)g(t � 1)(1 � g(t))s(t) (3)

� g(t � 1)s N(t)f(N(t))m

(MacDonald and Watkinson 1981; Ellner 1984), where s
is the density of seed, sm is the maximal mean production
of seed by an isolated plant, g is the fraction of seed ger-
minating in a given year, and q is the annual survival of
seed. In the current context, it is useful to note that this

equation reduces to a single difference equation for the
density of mature plants:

g(t � 1)
N(t � 1) p q(t) (1 � g(t))N(t)

g(t)

� g(t � 1)s N(t)f(N(t)) (4)m

p g(t)N(t) � l(t)N(t)f(N(t)).

(MacDonald and Watkinson 1981; Ellner 1984). This
equation has two stochastic components, g and l. These
model recruitment from the seedbank and from newly
produced seeds, respectively. The new parameter, g(t) p

, is a composite of the parame-q(t)(g(t � 1)/g(t))(1 � g(t))
ters driving the seedbank dynamics (it is assumed that the
correlation between g and l is negligible; this is a rea-
sonable assumption because g(t) is small and the dynamics
of g are driven by variation in q in addition to that in g).
In a constant environment, this term simplifies to g p

. In a stochastic environment, the mean of g willq(1 � g)
lie between 0 and 1; however, individual values of g may
exceed 1 if g(t) is small enough.

In numerical analyses, we assumed that both l and g

were lognormally distributed, with variances and ,2 2j jl g

respectively. Equation (9) was applied across the full
matrix of possible density state transitions to derivek # k

a state-transition matrix.

Density-Structured Dynamics

In a density-structured model, we define s to be a vector
of states (s) of the population. In general, there are k
ordered states, defined as a series of density intervals. An
interval i is defined by lower limit , upper limit ,� �N Ni i

and midpoint .midNi

The entries of s are s1, s2, … , sk and are the proportions
of the population in each state. These proportions can be
viewed in two equivalent ways: first, sj could represent the
proportion of a given set of sites that are in state j; second,
sj could measure the probability that a given site is in state
j. In the first case, if we modeled the population dynamics
of n sites, sjn would be the proportion of sites expected
to be in state j. In the second case, if we studied the
dynamics of a single site, sj would be the probability that
the site would be in state j at equilibrium.

The model relating the state of the population at time
to that at time t ist � 1

s(t � 1) p T 7 s(t), (5)

where T is a transition matrix with the followingk # k
form:
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…⎡ ⎤p p p p p11 12 13 14 1k
…p p p p p21 22 23 24 2k
…p p p p p31 32 33 34 3kT p . (6)…p p p p p41 42 43 44 4k

_ _ _ _ 5 _⎢ ⎥
…p p p p p⎣ ⎦k1 k2 k3 k4 kk

The diagonal entries of T are the probabilities (p) that a
patch in a given state will remain in that state for the next
year; that is, pjj is the probability that a patch in state j
will remain in that state. The off-diagonal entries of T
model the transitions between density states. For example,

is the probability that a patch in state j will be inp(j�1)j

state in the next year, whereas is the probabilityj � 1 pj(j�1)

that the reverse transition will occur. The model defined
by equation (6) is a Markov chain model. These models
are described in detail in numerous texts (see, e.g., Taylor
and Karlin 1998). So long as the probabilities are constant
and the model obeys certain assumptions (irreducibility,
i.e., that all states are reachable; and ergodicity, i.e., that
the eventual state is the same irrespective of the starting
point; see Stott et al. 2010), then the model can be used
to predict population sizes.

Because the entries of T are probabilities, all of the
entries within a column of T must sum to 1. Because all
of the rows of T sum to 1, it is always the case that

, and consequently, the dominant� s (t) p � s (t � 1) p 1i j

eigenvalue of T is 1.

Calculation of Transition Probabilities

The probability density of a site at density x being at den-
sity y in the next year is

2P(yFx) p G(y; F(x), j ), (7)l

where F() is the mean population size at time pre-t � 1
dicted by the continuous population model and G() is the
density function for the distribution of population sizes
about the mean. For a site that is at density x in year t,
the probability that it will be in state j in year ist � 1
then

�N

2P(jFx) p G(y; F(x), j )dy. (8)� l

�Nj

The probability that a site in state i at time t will be in
state j at time is then given by the following integral:t � 1

� �N N 2
� � G(y; F(x), j )P(x)dydx∫ ∫N N li j

P(jFi) p . (9)�N
� P(x)dx∫Nj

In equation (9), P(x)dx is the probability that a site is at
density x, that is, P(x) is the probability density of x in
the quasi-stationary distribution of population sizes. This
is important to include in the calculation of density state
transition probabilities because variation in initial density
will affect the overall probability of transition because of
the nonlinear relationship between densities in successive
years. Specifically, equation (8) has to be integrated across
the stationary distribution of population sizes. If this is
not known, it will yield only approximate estimates of the
transition probabilities. Equation (9), however, is exact.
The assumption in equation (9) is that empirical estimates
of density state transitions are measured on an equilibrium
population distributed according to the quasi-stationary
distribution of population sizes.

A simple expression for the quasi-stationary distribution
of population sizes predicted by the model defined by
equations (1) and (2) does not exist except in special cases
(Dennis and Patil 1984; Dennis and Costantino 1988). For
generating theoretical transition matrices according to
equation (9), we therefore used a numerical approach to
estimate P(x) in equation (9). For each set of parameter
values, we first simulated 106 generations by using the
stochastic model, iterating initially for 1,000 generations
to ensure that the quasi-stationary distribution was
achieved. We then approximated the distribution of pop-
ulation sizes by using kernel density estimation with the
density function in R (R Development Core Team 2010).
For generating estimates of the mean and variance of pop-
ulation size from density-structured data, we explore the
use of gamma distributions (below).

In the model with no seedbank, G() is simply a log-
normal probability distribution. It is straightforward to
modify equation (9) to account for the presence of a seed-
bank, simply by replacing the function F() with the pre-
dicted density according to equation (4). However, the
complication here is that the variance about the expected
density is given by a probability distribution that is the
sum of the two lognormal random variates l and g. This
is not a straightforward distribution and has no closed
form; therefore, we used a numerical approach: 106 gen-
erations were simulated from the initial density x, and
kernel density estimation was used to approximate G(x)
by means of the density function in R (R Development
Core Team 2010).

Determining the Density States

The density states may be set in one of a number of ways;
however, a practically relevant approach is that density



Density-Structured Models 5

classes are set a priori in order to reflect the range of
dynamics observed across a range of environmental con-
ditions (e.g., Queenborough et al., forthcoming). In the
results, we describe how the number of density states was
set at 10, five, and three for examining bias and at five
and three for exploring precision. The largest value was
chosen as an unrealistically high number intended to more
closely approximate the underlying stochastic difference-
equation model. The two smaller values were chosen to
represent values that might more usually be employed in
real applications. In the appendix tables, available in a zip
file in the online edition of the American Naturalist, we
also report results from density states in ex-k p 2–10
ploring model bias (appendix tables 1–4) and from k p

density states when exploring precision (appendix ta-2–6
bles 5–7). A smaller range was used in exploring precision
because for matrices with more than six density states, the
number of parameters to be estimated becomes imprac-
ticably large relative to the number of transitions sim-
ulated.

Approximating the Stationary Distribution of
Population Size

As noted above, the stationary distribution of population
sizes P(x) does not have an exact analytical form except
under certain circumstances. However, for populations
with a stable equilibrium, the gamma distribution can be
expected to provide an reasonable fit (May 1974; Dennis
and Patil 1984; Dennis and Costantino 1988). We therefore
explored the potential for the gamma distribution to ap-
proximate the mean and variance of the logarithm of pop-
ulation size on the basis of the stable state distribution
(we also explored the use of the gamma and lognormal
distributions; however, these performed slightly worse in
simulations).

The gamma distribution is defined by two parameters,
the shape (a) and rate (b):

ab
a�1 �bxgamma(x; a, b) p x e . (10)

G(a)

The mean is , and the variance is . In the case of2a/b a/b
the log-gamma distribution, is the logarithmx p log (N)
of the variable of interest.

If was the stable distribution of∗ ∗ ∗ ∗s p {s , s , … , s }1 2 k

density states predicted by the density-structured model,
we approximated the stable distribution of population
sizes by using nonlinear modeling to find values of a and
b that yielded the gamma distribution with the best fit to
s∗. We did this by using nonlinear modeling (using the
optim function in R; R Development Core Team 2010) to
find the best-fitting values according to least squares min-

imization. From the fitted log-gamma distributions, we
estimated the mean and variance in population sizes. This
was done for a range of l between 1.5 and 100 and a
range of jl between 0.1 and 1.0. Note that because l is
assumed to be lognormally distributed, this upper value
of jl is extremely high. We included this high value to
incorporate the extreme possibilities; however, in reality
we would expect values of jl to lie between 0 and 0.5 (see
appendix table 8).

Populations were simulated with no seedbank ( )g p 0
or with a moderate ( ; ) or highly persis-g p 0.2 j p 0.2g

tent ( ; ) seedbank. Finally, we simulatedg p 0.8 j p 0.2g

populations in which density dependence was overcom-
pensating ( ). We included overcompensating densityb p 4
dependence for the sake of completeness; however, we note
that such dynamics are expected to be rare (Rees and
Crawley 1991; Freckleton and Watkinson 2002). Below, we
report analyses of distributions of population size for

, 5, and 10 density states (see appendix tables 1–4k p 3
for expanded results for states). Each parameterk p 2–10
combination was replicated 100 times.

For each parameter combination, we also estimated the
precision of the estimates, using a simple randomization
procedure. For each parameter combination, we generated
T independent transitions from N(t) to . We usedN(t � 1)
these to generate empirically observed transition matrices
by calculating the rates of transitions between density
states. These matrices were then iterated to generate pre-
dicted stable state distributions, which were used in turn
to predict the mean and standard deviation of population
size using the approach described above. Precision was
measured as the coefficient of variation in parameter es-
timate in 100 simulations; this corresponds to the usual
definition of sampling variance for statistical estimators,
that is, the sampling variance about the estimated, but not
necessarily true, value.

Here we report results for transitions. ThisT p 500
number is equivalent to the number of plots recensused
in a study: for example, 500 transitions could represent
500 plots resurveyed once or 250 plots resurveyed twice.
This is a number comparable with sample sizes used in
previous detailed demographic modeling (e.g., Rees et al.
[1996] used up to 700 transitions; Watkinson et al. [2000]
used between 300 and 800 transitions; Freckleton et al.
[2000] used 480 transitions). Note that usually we would
expect that the ease of collection of density-structured data
would permit much larger sample sizes than using con-
ventional demographic approaches. In the appendix, we
report expanded results for 200, 500, and 1,000 transitions,
and for between two and six density states.

In analyzing bias and precision, we concentrate on the
standard deviation of population size. To interpret these,
we note that a bias (or precision) of �0.05 will imply that
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the 95% upper limit for population size will be 5% too
high or that the standard error for mean population size
will be 5% too high. To put this degree of error in context,
if 1.96 is the multiplier for the usual 0.975 tail of a normal
distribution, with a 5% error the effective multiplier be-
comes 2.058. This corresponds to a percentile of 0.98; that
is, it leads to only a 0.5% difference in probability in this
tail, which is relatively minor. For instance, in a two-tailed
test, this would change a “true” to 0.05. In termsp p 0.04
of interpretation, we would argue that a 5% bias is only
small, and we suggest that 10% is a bias that would start
to become notable, although not necessarily fatal. In tables
1 and 2, we highlight all estimates of bias or precision that
are greater than 10%.

Recovering the Continuous Model

As we noted above, in a density-structured model it is not
necessary to explicitly specify a model for density depen-
dence or detailed population dynamics. Simply by using
estimated probabilities to form a transition matrix and
iterating this model, it is possible to generate predictions
of population size. In practical applications, however, it
may be desirable to be able to link density-structured mod-
els to continuous demographic models. This may be use-
ful, for example, if other information is available or if the
aim of modeling is to simulate populations under new
conditions. In this section, we therefore ask whether the
underlying continuous model can be recovered from a
density-structured model. More generally, the simulations
we report demonstrate the degree of equivalence of the
predictions of the two types of model.

Specifically, we asked, given a matrix T generated ac-
cording to equation (9), could the underlying determin-
istic model be recovered in the absence of any other in-
formation? We did this by using a numerical procedure
utilizing the log-gamma approximation of the stationary
distribution of population sizes. The analysis proceeded
in the following stages: (1) The matrix T was solved to
yield the stable distribution of density states, ∗s p

. (2) Via the log-gamma approximation, s∗∗ ∗ ∗{s , s , … , s }1 2 k

was used to approximate P(x), the stationary distribution
of population sizes for the continuous population model
using the algorithm described above. (3) Values of l, a,
and jl were chosen (we restricted this analysis to the sim-
pler model of a population with no seedbank and stable
dynamics, i.e., , as the more complex model requiresb p 1
an additional computationally relatively intensive step to
numerically estimate the distribution of population sizes).
(4) Given the population parameters in step 3 and the
approximation of the stable distribution of population
sizes in step 2, a new matrix Trat was formed according to
equation (9) and the methods described above to estimate

T. (5) The elements of Trat were regressed on the corre-
sponding elements of T, via regression through the origin.
The residual variance of this regression was used as a mea-
sure of goodness of fit (preliminary analysis indicated that
this metric yielded the fastest and most reliable conver-
gence). (6) Steps 3–5 were repeated until the best-fitting
estimates of l, a, and jl were found. The optim function
in R (R Development Core Team 2010) was used to find
the best-fitting model parameters.

This procedure was used as a simple method for finding
the best-fitting estimates of the model parameters in the
numerical analyses. This is not intended as a statistical
method for analyzing data in real applications in which
there will be error in the estimates of the elements of T,
among other issues. The aim here is simply to determine
whether the underlying parameters of the continuous
model can in principle be recovered and hence whether
the information contained in the density-structured model
is comparable with that contained in a full continuous-
density model. This analysis was performed for a range of
values of l between 1.5 and 100 and values of jl between
0.1 and 0.5, and we used , 5, and 10 density states.k p 3

Model Results

Examples of Discretized Population Dynamics

Figure 1 shows examples of three population models that
differ in several respects. Figure 1A is a model of popu-
lation dynamics in which there is no seedbank and pop-
ulation dynamics are determined by a compensatory den-
sity response. In figure 1B, there is a persistent bank of
seed, while in figure 1C, density dependence is overcom-
pensating and populations show persistent two-point
cycles.

Figure 2 shows the discretized versions of the models
in figure 1, along with the predictions of the stable dis-
tribution of density states. The main points to be made
from this figure are that (1) the discretized versions of the
models still contain information on population dynamics
and the variance in parameters between models; (2) as
anticipated from equation (9), the stable distribution of
density states is able to exactly match the distribution from
the continuous model; and (3) although the description
of dynamics based on three states is relatively coarse, with
as few as five density states the models and predictions
provide a reasonable level of resolution.

Because the transition probabilities calculated according
to equation (9) are exact, so long as the stable distribution
of population sizes exists, the density-structured model is
able to provide an accurate characterization of population
dynamics irrespective of the underlying continuous model.
Thus, the density-structured models are able to accurately
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Figure 1: Examples of stochastic population models and corresponding stationary distributions of population sizes. A, Compensating density
dependence with no seedbank: , , , , , . B, Compensating density dependence with a persistent2l p 10 j p 0.3 N p 1,000 b p 1 g p 0 j p 0l eq g

seedbank: , , , , , . C, Overcompensating density dependence with no seedbank: ,2 2l p 5 j p 0.5 N p 100 b p 1 g p 0.8 j p 0.2 l p 100 j pl eq g l

, , , , . The black line represents the mean response, and the red lines represent the fiftieth and ninety-fifth percentiles.0.1 N p 100 b p 4 g p 0 j p 0eq g

D–F show the corresponding stationary distributions of population sizes.

summarize the model with a persistent seedbank and the
one with overcompensating density dependence as well as
the one with compensating density dependence.

Accuracy of Approximation of Mean and Variance

The approximations of the stable distributions of popu-
lation sizes based on the log-gamma distribution provide
generally accurate estimates of the mean and variance of
population sizes under a range of conditions (see fig. 3
for graphical examples). It is perhaps unsurprising that
the estimate of the mean is usually accurate (to within 1%
in all simulations), as assignment of density states assumes
that the density states encompass the range of densities
expected to occur. Table 1, however, summarizes how ac-
curately the log-gamma approximations estimate the stan-

dard deviation of the stationary distribution of population
sizes (see also appendix tables 1–4).

The log-gamma approximations are very accurate for
populations with compensatory density dependence, no
seedbank, and varying levels of stochasticity; the only no-
table deviation occurs when the variance in l is very high
( ), and l is low (1.5). As shown in figure 3, thej p 1l

reason why the log-gamma approximations begin to fail
is that the distribution of population sizes has a long lower
tail when the variance in population growth rate is high
and l is close to 1. The gamma distribution cannot ac-
commodate this fat lower tail, and hence the approxi-
mation breaks down. Otherwise the approximation works
well, with little bias.

The approximation of population size is also very ef-
fective when there is a moderate seedbank. There is vir-
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Table 1: Bias in estimates of the standard deviation of population size using log-gamma approximations

l, jl

Compensating DD/
no seedbank

Compensating DD/
moderate seedbank

Compensating DD/highly
persistent seedbank

Overcompensating DD/
no seedbank

3 states 5 states 10 states 3 states 5 states 10 states 3 states 5 states 10 states 3 states 5 states 10 states

l p 1.5:
.1 .00 .00 .00 .00 .00 .00 �.05 .01 .01 .00 .00 .00
.2 �.01 .00 .00 .00 .00 .00 �.04 .00 .02 �.01 �.01 .01
.3 �.03 .00 .01 .00 .00 .01 �.02 .00 .01 �.03 �.01 .01
.4 �.04 .00 .02 .00 .00 .01 �.01 .00 .01 �.06 .01 .02
.5 �.08 .01 .03 .00 .01 .01 .00 .01 .01 �.09 .03 .03
1.0 �.13 .14 .10 �.01 .02 .02 .00 .01 .01 �.12 .14 .12

l p 5:
.1 .00 .00 .00 .00 .00 .00 �.07 .03 .02 .00 .00 .00
.2 .00 .00 .00 .00 .00 .00 �.05 .01 .02 .00 .00 .00
.3 .00 .00 .00 .00 .00 .00 �.03 .00 .01 �.01 .00 .01
.4 .00 .00 .00 .00 .00 .00 �.01 .00 .01 �.03 .00 .01
.5 .00 .00 .00 .00 .00 .01 .00 .01 .01 �.05 .00 .02
1.0 �.01 �.01 .00 �.01 .00 .02 .00 .01 .01 �.09 .02 .06

l p 10:
.1 .00 .00 .00 .00 .00 .00 �.07 .02 .02 �.02 �.01 .00
.2 .00 .00 .00 .00 .00 .00 �.05 .01 .02 �.06 .00 .02
.3 .00 .00 .00 .00 .00 .00 �.03 .01 .02 �.11 .04 .03
.4 .00 .00 .00 �.01 .00 .01 �.01 .01 .01 �.15 .08 .05
.5 .00 .00 .00 �.01 .00 .01 .00 .00 .01 �.18 .10 .06
1.0 �.01 .00 .00 �.02 .00 .02 .00 .01 .01 �.11 .04 .10

l p20:
.1 .00 .00 .00 .00 .00 .00 �.07 .02 .02 �.24 �.43 �.37
.2 .00 .00 .00 .00 .00 .00 �.05 .01 .02 �.11 �.09 �.14
.3 .00 .00 .00 .00 .00 .00 �.03 .01 .02 �.12 .06 �.02
.4 .00 .00 .00 �.01 .00 .01 �.01 .00 .01 �.12 .12 .05
.5 .00 .00 .00 �.01 .00 .01 .00 .01 .01 �.13 .14 .08
1.0 .00 .00 .00 �.03 .00 .02 .00 .01 .01 �.11 .05 .13

l p100:
.1 .00 .00 .00 .00 .01 .00 �.07 .02 .02 �.24 .64 .43
.2 .00 .00 .00 .00 .00 .00 �.05 .01 .02 �.01 �.39 �.37
.3 .00 .00 .00 .00 .00 .00 �.03 .01 .02 �.04 �.35 �.28
.4 .00 .00 .00 �.01 .00 .01 �.01 .00 .01 �.13 �.26 �.20
.5 .00 .00 .00 �.01 .00 .01 .00 .01 .01 �.24 �.13 �.12
1.0 .00 .00 .00 �.03 .01 .02 .00 .01 .01 �.11 .00 .05

Note: Estimates of bias of more than 10% greater or less than the true value are shown in boldface. l is the finite rate of population increase; jl is the

standard deviation of l. DD p density dependence.

tually no bias in the estimates of the standard deviation
of population size. This is clear in figure 3, in which the
approximation of the distribution of population sizes is
very close indeed.

When a persistent seedbank is present, the approxi-
mation is generally also quite reasonable. When the num-
ber of density states is low ( ) and the variance in lk p 3
is low (0.1), the bias in the estimate of the variance in
population size can be as high as 10%. However, as the
variance in l increases or the number of density states is
increased to or 10, this bias declines considerably.k p 5

When population dynamics are driven by overcompen-
sating density dependence, the log-gamma approximation

performs less well, especially as the mean value of l in-
creases and population dynamics become intrinsically less
stable. For or 100, the approximation is unreliablel p 20
for any number of density states, although for lower values
the approximation is generally reasonable.

Table 2 summarizes the precision of estimates of the
standard deviation of population size for models using
three and five density states. We did not estimate precision
for 10 density states because the 500 transitions employed
is too low a number to estimate the large number of den-
sity-state transitions (as noted above, 10-state models were
included in the previous analysis, although this was an-
ticipated to be too many density states to be practicable).
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Table 2: Precision of estimates of the standard deviation of population size using log-gamma approximations

l, jl

Compensating DD/
no seedbank

Compensating DD/
moderate seedbank

Compensating DD/highly
persistent seedbank

Overcompensating DD/
no seedbank

3 states 5 states 3 states 5 states 3 states 5 states 3 states 5 states

l p 1.5:
.1 .06 .07 .05 .06 .12 .08 .06 .07
.2 .07 .07 .06 .07 .10 .09 .05 .07
.3 .07 .08 .06 .07 .08 .07 .08 .06
.4 .09 .08 .07 .07 .08 .08 .08 .08
.5 .10 .07 .08 .07 .10 .09 .11 .07
1.0 .23 .11 .11 .07 .09 .09 .25 .11

l p 5:
.1 .04 .06 .05 .05 .11 .08 .05 .05
.2 .05 .05 .05 .06 .10 .07 .05 .06
.3 .05 .05 .05 .05 .09 .08 .05 .05
.4 .05 .05 .05 .05 .08 .09 .05 .05
.5 .05 .05 .05 .06 .08 .09 .05 .06
1.0 .06 .06 .05 .06 .10 .11 .08 .06

l p 10:
.1 .04 .05 .04 .05 .11 .08 .06 .07
.2 .05 .05 .05 .05 .09 .09 .07 .06
.3 .05 .05 .04 .05 .09 .08 .06 .06
.4 .05 .05 .05 .06 .11 .09 .07 .07
.5 .04 .06 .05 .06 .07 .08 .07 .07
1.0 .05 .05 .05 .04 .07 .08 .08 .08

l p 20:
.1 .05 .05 .04 .05 .09 .08 NA .05
.2 .04 .05 .04 .05 .10 .09 .10 .10
.3 .05 .05 .04 .05 .09 .07 .07 .09
.4 .05 .05 .04 .05 .07 .08 .09 .08
.5 .05 .05 .05 .05 .09 .08 .09 .08
1.0 .05 .06 .05 .04 .08 .09 .07 .09

l p 100:
.1 .04 .05 .04 .05 .11 .08 NA NA
.2 .04 .05 .05 .05 .09 .08 NA .03
.3 .04 .05 .05 .05 .09 .07 .05 .06
.4 .04 .05 .05 .06 .08 .09 .08 .06
.5 .05 .04 .05 .05 .08 .08 .11 .07
1.0 .06 .05 .05 .05 .08 .09 .09 .10

Note: Estimates greater than 0.1 (i.e., coefficient of variation in estimates is greater than 10%) are shown in boldface. l is the finite rate of

population increase; jl is the standard deviation of l. DD p density dependence; NA p not available.

Precision is generally high (i.e., the values of the coefficient
of variation are typically low), with the coefficient of var-
iation typically being less than 0.1 and usually less than
0.05. The only exceptions, unsurprisingly, are when pop-
ulation dynamics are highly nonlinear or extremely sto-
chastic ( ). In the former case, it is often not possiblej p 1l

to fit the gamma distribution at all for small or moderate
sample sizes (the “NA” values in table 2 and appendix
tables 5–7).

Precision is frequently the same or even marginally
worse as the number of states is increased (table 2; see
also appendix tables 5–7). This is because, although in-
creasing the number of states improves the description of

the distribution of population size, for the same size of
data set, the effective sample size for estimating the tran-
sitions between a large number of states is lower than that
for a small number of states. For example, with 500 tran-
sitions, there are effectively observa-500/(3 # 3) p 55.6
tions per transition in a three-state model, whereas there
are effectively observations per transi-500/(5 # 5) p 20
tion in a five-state model.

Recovering the Continuous Process

As shown in table 3, the continuous model is readily re-
covered from transition matrices, with very little intrinsic
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Table 3: Estimates of continuous model parameters from transition matrices

True values of
l, 2jl

3 states 5 states 10 states

l 2jl Neq l 2jl Neq l 2jl Neq

l p 1.5:
.1 1.50 .10 98.74 1.50 .10 99.62923 1.47 .10 99.42
.2 1.49 .20 97.17 1.44 .20 97.62541 1.47 .20 98.37
.3 1.43 .32 92.19 1.47 .30 95.6521 1.48 .30 99.27
.4 1.42 .44 90.10 1.41 .41 91.39677 1.45 .40 95.13
.5 1.37 .56 80.76 1.38 .51 86.63374 1.39 .51 89.19
1.0 NA NA NA NA NA NA NA NA NA

l p 5:
.1 5.07 .10 100.04 4.90 .10 99.96023 5.01 .10 100.23
.2 4.98 .20 100.28 4.87 .20 100.0865 4.83 .20 100.26
.3 4.93 .30 99.63 4.93 .30 99.7484 4.89 .30 100.09
.4 4.89 .40 99.39 4.83 .40 99.7398 4.90 .40 100.03
.5 4.74 .50 99.16 4.79 .50 99.79655 4.36 .50 98.93
1.0 4.00 .98 99.48 4.22 1.00 99.87 4.33 1.00 97.69

l p 10:
.1 9.92 .10 99.92 10.09 .10 100.3133 9.66 .10 99.55
.2 9.97 .20 100.08 9.97 .20 99.66012 9.78 .20 100.32
.3 9.79 .30 99.96 9.96 .30 99.98 9.97 .30 99.73
.4 9.65 .40 99.69 9.76 .40 99.68 9.87 .40 100.02
.5 9.54 .50 99.80 9.77 .50 99.88955 9.71 .49 99.54
1.0 8.63 1.00 99.19 8.38 1.01 98.99 8.95 1.00 100.15

l p 20:
.1 19.80 .10 99.90 20.68 .10 99.70 20.36 .10 100.09
.2 19.77 .20 99.91 20.40 .20 99.96 19.51 .20 99.85
.3 19.72 .30 99.83 19.50 .30 100.07 17.23 .30 100.12
.4 19.49 .40 99.79 19.83 .40 99.96 20.44 .40 100.45
.5 19.27 .50 100.11 19.65 .50 99.92 19.51 .50 100.10
1.0 16.95 1.00 99.60 17.60 1.00 99.91 17.73 1.00 99.83

l p 100:
.1 100.30 .10 100.09 102.31 .10 100.40 98.04 .10 99.70
.2 100.17 .20 100.02 99.63 .20 99.97 97.98 .20 100.17
.3 96.32 .30 99.98 98.30 .30 99.89 101.66 .30 100.03
.4 102.95 .40 100.05 96.56 .40 100.04 94.49 .40 99.62
.5 92.31 .50 99.82 95.27 .50 100.42 96.77 .50 99.86
1.0 82.58 1.00 100.05 84.16 1.00 99.85 89.54 1.00 99.93

Note: l is the finite rate of population increase; jl is the standard deviation of l; Neq is the equilibrium population

size (assumed to be 100 throughout). NA p not available.

bias. The only exception occurs when the value of l is
low and its variance very high (1). There is a degree of
underestimation of l when the variance in l is high; how-
ever, the extent of the bias is generally low. There is also
a small bias in the estimate of Neq when l is low and
variance in l is high. Estimates of the variance in l are
typically very close indeed to the true values. As empha-
sized above, the aim of the analysis summarized in table
2 is to show that the parameters of the continuous model
can, in principle, be recovered accurately from the discrete
transition matrix. However, estimation from real data
would require additional steps, specifically to account for
statistical uncertainty in estimates of the elements of T
and to generate variances for the estimated parameters.

Discussion

The density-structured modeling approach is a funda-
mentally empirical one. The aim is to use large amounts
of rapidly collected data to generate models that encap-
sulate and summarize population dynamics. The empiri-
cally generated transition matrices and their projections
then become tools for asking how different factors affect
population dynamics and for simulating and projecting
population sizes. Using simulations, we have shown that
potentially, this approach can very closely approximate
distributions of population size.

Of course, as with any modeling approach, there are
decisions and trade-offs that have to be made. Density-
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structured approaches have the advantage that they require
less intensive data to parameterize. The disadvantages are
that they are not explicitly formulated in terms of param-
eters describing the processes generating population dy-
namics and that they require reasonable amounts of data
to parameterize. No single modeling approach fits all pur-
poses: our aim in this article has been to highlight that
for studies that primarily aim to characterize population
variability and to account for it in predicting population
size, density-structured approaches may offer advantages
in that they permit faster data collection. This may permit
robust modeling in circumstances when other approaches
may be compromised by lack of data (e.g., see Freckleton
et al. 2008).

Model Structure

Density-structured models make few assumptions about
the processes driving population dynamics. Like other
purely empirical approaches, such as Leslie and Lefkovitch
matrices (e.g., Caswell 2000), or empirical approaches,
such as semiparametric modeling (Ellner et al. 2002), the
model is itself a tool for summarizing the data and the
underlying dynamics as well as for modeling and popu-
lation projections.

The advantage of using an empirical approach for mod-
eling is that it is not necessary to make assumptions about
the way that the system is structured or to impose par-
ticular function for the relationships between key variables
(e.g., Ellner et al. 2002). This avoids the problem that
misspecifying either of these elements can lead to poten-
tially misleading predictions (e.g., Freckleton et al. 2008).
The downside of this empirical focus is that detail may be
lost. For instance, using a density-structured approach to
model annual census data ignores details of within-year
population flux or details of how other processes affect
demographic rates. Frequently, only annual census data
are available, however, and the potential for such analyses
is limited in any case.

Density-structured models are inherently density de-
pendent if density dependence exists in the population.
This is because the transition probabilities are integrated
across the density-dependent function (fig. 1). This is dif-
ferent from other structured models, such as stage- or age-
structured or integral projection models, in which density
dependence has to be explicitly incorporated into the tran-
sition matrix by allowing the transition probabilities to
vary with density (e.g., Alvarez-Bullya 1994; Silva Matos
et al. 1999). This is an important advantage, as measuring
and modeling density dependence are well known to con-
stitute a difficult part of the process of developing and
fitting models to continuous density data (Bulmer 1975;

Dennis and Taper 1994; Dennis et al. 2006; Freckleton et
al. 2006).

In the analyses presented above, we considered annual
plant populations because they present relatively simple
life histories. We have shown that the approach is robust
to the inclusion of the additional complexity of a long-
lived bank of seed. This robustness results from the pop-
ulation achieving a stable stage distribution, for example,
also permitting the model for the population to be written
as a single difference equation (eq. [4]). We anticipate that
the approach could be extended to perennial plants, on
the assumptions that stage distributions are relatively sta-
ble and that density states are not too heterogeneous. Cer-
tainly, the method should be highly applicable for biennials
and short-lived perennials.

The idea of taking a coarsened approach to measuring
and modeling population data runs counter to trends in
the analysis of demographic data on size- or stage-struc-
tured populations, in which integral projection models are
becoming increasingly commonly used (Easterling et al.
2000; Ellner and Rees 2006, 2007). This approach has been
developed because in stage-structured models in which
flux between states is modeled by probabilities of growth
and stasis, predictions of growth between stages can be
too high, with individuals moving from the smallest to the
largest states too quickly. This problem can be dealt with
by using a model with a continuous state variable (or
approximating this by using a very large number of states)
and integrating growth and survival functions to generate
growth transition probabilities.

Our simulations showed that there is potential for re-
covery of the continuous process from the discrete tran-
sition matrix. Although density-structured models can be
used as modeling tools in their own right, this is potentially
an extremely valuable application of this approach. What
is particularly important is that density-structured data can
be collected very much more rapidly than can detailed
demographic data. Thus, it may be more economical to
attempt to fit demographic models using initially coarse-
grained data.

Scale

In the theoretical analysis, we have not been explicit about
the scale at which the model operates. In reality, these
models can be applied at a range of scales. For instance,
Taylor and Hastings (2004) used individual discrete pop-
ulations as the level of analysis. The proximate application
of this approach, however, probably lies in modeling me-
soscale dynamics. The typical application of a model would
be to a single-site population in which quadrats or patches
are delimited and then recensused annually. The spatial
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variation in density is therefore used as the basis for con-
structing the transition matrix.

This approach is, in principle, the same as that com-
monly used for monitoring and modeling plant popula-
tions (e.g., Freckleton and Watkinson 2002). The differ-
ence is that density-structured data can be collected very
rapidly. As an example, in an ongoing study, ∼10,000
quadrats are resurveyed annually by a single researcher (S.
A. Queenborough and R. P. Freckleton, unpublished data).

The rapidity of data collection at single sites should
facilitate data collection across larger scales; it should be
more feasible to collect replicate data at different sites. The
data collected could be treated individually at each site,
permitting intersite variability to be quantified. As we
highlight below (see “Limitations and How to Recognize
Them”), preliminary data will be required to set the ap-
propriate spatial scale of modeling as well as to decide the
density states and how many of these will be used.

Robustness

As noted above, a density-structured model is not an ap-
proximation at equilibrium because the probability in
equation (9) is exact. This result is, however, dependent
on the denominator of equation (9) being constant and
not changing with time or density. If this does change, for
example, because the distribution of population sizes is
changing, then the model predictions may not be robust
(see below).

There has been a great deal of discussion of the im-
portance of accounting for measurement error in models
of population dynamics, and numerous techniques have
been suggested for dealing with this (Bulmer 1975; Clark
and Bjørnstad 2004; Freckleton et al. 2006). Accounting
for measurement error is necessary because ignoring it can
lead to bias in estimates of the density-dependent com-
ponents of models (Shenk et al. 1998; Freckleton et al.
2006) as well as misestimation of the effects of environ-
mental effects (Pablo Almaraz et al., unpublished manu-
script). Although techniques exist for estimating models
in the presence of unknown levels of census error (e.g.,
Dennis et al. 2006), the most powerful approaches are
possible only when census error can be estimated (re-
viewed by Freckleton et al. 2006).

Through the use of density-structured models, it should
be reasonably straightforward to include measurement er-
ror in the modeling process, as the fitting of these models
is based on vector-generalized linear models, which are
closely related to conventional linear modeling ap-
proaches. Methods such as SIMEX (simulation-extrapo-
lation; Cook and Stefanski 1994) are straightforward to
implement and can be used to correct for bias, and for
misclassification of discrete states a method called MC-

SIMEX (misclassification simulation-extrapolation) has
been developed (Küchenhoff et al. 2006). Alternatively,
state-space models (Harvey 1989) allow a combined model
for the process of generating the true data as well as the
error to be specified and fitted simultaneously.

Dealing with Density-Independent Populations

One of the assumptions of the approach is that the pop-
ulation is at or near a stable state distribution and that an
equilibrium exists with a quasi-stationary distribution of
population sizes. If this is not true, then the equilibrium
population size and its variance, by definition, do not exist.
To obtain insight into how this affects the analysis of data
from density-structured models, note that if population
dynamics are density independent, then equation (9) be-
comes

� �N Ni i 2
� �G(y; lx, j )P(x)dydx∫ ∫N N l 1i j

P(j, iFP(x)) p . (11)�1 Ni
�P(x)dx∫N 1j

The estimated transition probabilities are dependent on
Pt(x), which is the distribution of population sizes at time
t. This will change with t; that is, it is not stationary.
However, two important conclusions can be drawn from
equation (11). First, for that time period, transition prob-
abilities calculated according to equation (11) are exact
and not approximations. Thus, interannual changes will
be measured correctly. Second, if an approximation for
the distribution of population sizes can be obtained, den-
sity-structured data could be used to estimate rates of
population increase or decrease. The algorithm for doing
this would follow that used above to fit the model for
density-dependent population dynamics.

Another approach is possible when a long time series
of data is available: it should be possible to generate annual
estimates of transition probabilities and to relate these to
the average or variance in density. This can be used to
generate a model for any changes in transition probabilities
that result from changes in the distribution of population
sizes; this model can be used as a heuristic adjustment. In
addition, annual matrices can be used to generate annual
predictions of population sizes and population growth
rates. These can be used to generate estimates of how
sensitive the model predictions are to violation of the
model assumptions.

Practical Considerations

One of the prime reasons for using a density-structured
modeling approach in a field program is that it should
permit census data to be collected quickly and relatively
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inexpensively. However, there are several important con-
siderations in the design of such a study. The key first steps
involve deciding what the density states should be and
training observers to estimate these. The exact way that
these are done obviously depends precisely on the study
system. We have used density-structured data as the basis
for designing large-scale field monitors of arable weeds
and sand dune annuals, and the details of how we designed
these programs are described elsewhere (Queenborough
et al., forthcoming). In doing this, we have come to the
following broad conclusions: (1) initial data are invaluable
in designating the data states; however, for many systems
such data exist in the literature or can be readily collected
in pilot analyses; and (2) it is relatively straightforward to
train observers to monitor and estimate density states. This
can be done either by having fixed criteria for visual as-
signment of density or by using small subsamples, within
the main sampling units, that are used to assign states on
a numerical basis.

Dealing with the issue of measurement error is an
important consideration in the design of monitoring pro-
grams that employ a density-structured approach (Queen-
borough et al., forthcoming). It is relatively straightfor-
ward to conduct replicated surveys to measure
within-observer variability as well as the variability be-
tween observers. This may be done by having an observer
conduct repeat surveys of a subset of populations or by
surveying a single population several times using different
observers. This should not add significantly to the work-
load in a field program; however, the advantages of doing
so are huge (Dennis et al. 2009).

One of the downsides of using transition matrices is
that each matrix contains k2 entries, each of which has to
be estimated. It might therefore be argued that the data
requirements would be prohibitive for accurate parame-
terization. On the other hand, the rapidity with which data
can be collected should enable large data sets to be built
up that encapsulate all commonly observed transitions.
Moreover, as shown in the examples in figure 2, a high
proportion of transition probabilities might be expected
to be 0 in any case, which would reduce the data require-
ments. The simulation results showed that reasonable re-
sults can be expected for between 200 and 500 samples,
depending on the number of density states and the nature
of population dynamics. As noted above, this is not un-
reasonable, compared with sample sizes in previous de-
tailed demographic modeling analyses.

Limitations and How to Recognize Them

Our intention in this article has been to highlight the
possible utility of density-structured models and data in
plant ecology. One single modeling approach cannot deal

with all eventualities, and just as density-structured models
will be preferable under some circumstances, there are
conditions under which they will not be suitable. Here we
outline what such conditions might be.

First, as outlined above, if population dynamics are non-
equilibrium or there is no quasi-stationary distribution of
population sizes, it is not possible to capture population
dynamics and predict population sizes with a Markov
model. As suggested above, density-structured models and
data can have some value under such circumstances; how-
ever, they would have to be carefully analyzed.

Second, if there are complex life-history divisions within
the population, then this can generate complexity that
cannot be averaged over in a similar manner. For example,
the convenient approximation in equation (4) allows the
complexity of a seedbank to be incorporated in a model
of little more complexity (i.e., a single difference equation)
than one without a seedbank. Complex age or stage de-
pendence would complicate matters, however. This would
require additional states to be included within the model,
with the consequence that the number of parameters
would be inflated. If this complexity were ignored, the
model predictions could be compromised.

Finally, the simulation results highlight conditions un-
der which the performance of the approach may suffer.
This is particularly the case when stochasticity is extreme
or population dynamics are highly nonlinear. It should be
pointed out that the density-structured approach is not
inherently biased or flawed under such conditions (e.g.,
fig. 2; eq. [9]). Rather, it may prove difficult to obtain
reliable approximations of population size distributions
under such circumstances (tables 1, 2; fig. 3). The main
conclusion here is that for populations in which stochas-
ticity is extreme or population dynamics are nonlinear,
large amounts of data and relatively high numbers of den-
sity states will be required.

These considerations all underline, as emphasized
above, that before a practical program of data collection
can be embarked upon, a certain amount of preliminary
information is required. This includes a qualitative un-
derstanding of the population ecology of the species to be
studied and some information on typical ranges of density,
as well as the likelihood of extreme variations in density.
Usually, a good proportion of such information is available
from the literature or from pilot studies.

In our analyses, we have used one approach to gener-
ating predictions of the mean and variance of population
size from density-structured models and data, namely, to
treat the distribution of predicted density states as quad-
rature points and use these to fit a gamma distribution.
In general, numerical quadrature of this type is extremely
accurate if the data are taken from the assumed distri-
bution (e.g., as in Gauss quadrature; Abramowitz and Ste-
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gun 1972). As we show in the appendix, because the dis-
tribution of log population sizes is often very well
approximated by a gamma distribution, even with only
two density states it is often possible to obtain an unbiased
estimate of the standard deviation of population size.

In practical applications, it should be straightforward to
diagnose failure of the gamma model. The fit of the gamma
model will be poor, and goodness-of-fit tests (e.g., x2 test)
can be used to test whether a fitted gamma model is ad-
equate. If the gamma model does not fit, then the sim-
ulation results (fig. 3) suggest two immediate modifica-
tions. First, if it suspected that the dynamics are nonlinear,
then a multimodal distribution could be fitted. This could
be done by fitting mulitmodal gamma distributions (e.g.,
Dennis and Patil 1984). In other cases, the lack of fit could
be related to a long lower tail. Options that could be ex-
plored here include the Adès distribution (e.g., Perry and
Taylor 1985), which is a power transformation of a gamma
distribution.

It is important to point out that the performance of
approximations should be regarded as a separate issue
from the intrinsic bias of density-structured models. Used
by themselves, the predictions of density-structured mod-
els should be unbiased. Predictions of rates of transitions
between states of the proportions of sites in each density
state should be the same as would be obtained by discre-
tizing the predictions of a continuous model.

Concluding Remarks

In the modeling and analysis presented above, we explored
how density-structured models can be applied to an im-
portant problem, namely, predicting how population dy-
namics can be modeled and predicted while accounting
for temporal variability. The key elements that the models
included are density dependence and temporal variability
that leads to a distribution of population sizes around the
mean.

Density-structured models can offer a useful starting
point for analysis of population dynamics. They can be
used to simplify the data and modeling requirements, es-
pecially in terms of mathematical and computational in-
tensity. This can allow the data to be explored and initial
hypotheses to be tested and refined. For designing large-
scale monitoring programs and in using data from these
to generate forecasting tools, density-structured models
should be an extremely powerful approach.
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