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Review
How should ecologists and evolutionary biologists
analyze nonnormal data that involve random effects?
Nonnormal data such as counts or proportions often defy
classical statistical procedures. Generalized linear mixed
models (GLMMs) provide a more flexible approach for
analyzing nonnormal data when random effects are pre-
sent. The explosion of research on GLMMs in the last
decade has generated considerable uncertainty for prac-
titioners in ecology and evolution. Despite the availability
of accurate techniques for estimating GLMM parameters
in simple cases, complex GLMMs are challenging to fit
and statistical inference such as hypothesis testing
remains difficult. We review the use (and misuse) of
GLMMs in ecology and evolution, discuss estimation
and inference and summarize ‘best-practice’ data analysis
procedures for scientists facing this challenge.

Generalized linear mixed models: powerful but
challenging tools
Data sets in ecology and evolution (EE) often fall outside
the scope of the methods taught in introductory statistics
classes. Where basic statistics rely on normally distributed
data, EE data are often binary (e.g. presence or absence of a
species in a site [1], breeding success [2], infection status of
individuals or expression of a genetic disorder [3]), pro-
portions (e.g. sex ratios [4], infection rates [5] or mortality
rates within groups) or counts (number of emerging seed-
lings [6], number of ticks on red grouse chicks [7] or clutch
sizes of storks [2]). Where basic statistical methods try to
quantify the exact effects of each predictor variable, EE
problems often involve random effects, whose purpose is
instead to quantify the variation among units. The most
familiar types of random effect are the blocks in exper-
iments or observational studies that are replicated across
sites or times. Random effects also encompass variation
among individuals (whenmultiple responses aremeasured
per individual, such as survival of multiple offspring or sex
ratios ofmultiple broods), genotypes, species and regions or
time periods. Whereas geneticists and evolutionary biol-
ogists have long been interested in quantifying the mag-
nitude of variation among genotypes [8–10], ecologists
have more recently begun to appreciate the importance
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of random variation in space and time [11] or among
individuals [12]. Theoretical studies emphasize the effects
of variability on population dynamics [13,14]. In addition,
estimating variability allows biologists to extrapolate stat-
istical results to individuals or populations beyond the
study sample.

Researchers faced with nonnormal data often try short-
cuts such as transforming data to achieve normality and
homogeneity of variance, using nonparametric tests or rely-
ing on the robustness of classical ANOVA to nonnormality
for balanced designs [15]. Theymight ignore random effects
altogether (thus committing pseudoreplication) or treat
them as fixed factors [16]. However, such shortcuts can fail
(e.g. count data with many zero values cannot be made
normal by transformation). Even when they succeed, they
might violate statistical assumptions (even nonparametric
tests make assumptions, e.g. of homogeneity of variance
across groups) or limit the scope of inference (one cannot
extrapolate estimates of fixed effects to new groups).

Instead of shoehorning their data into classical statisti-
cal frameworks, researchers should use statistical
approaches that match their data. Generalized linear
mixed models (GLMMs) combine the properties of two
statistical frameworks that are widely used in EE, linear
mixed models (which incorporate random effects) and
generalized linear models (which handle nonnormal data
by using link functions and exponential family [e.g. nor-
mal, Poisson or binomial] distributions). GLMMs are the
best tool for analyzing nonnormal data that involve ran-
dom effects: all one has to do, in principle, is specify a
distribution, link function and structure of the random
effects. For example, in Box 1, we use a GLMM to quantify
the magnitude of the genotype–environment interaction in
the response ofArabidopsis to herbivory. To do so, we select
a Poisson distribution with a logarithmic link (typical for
count data) and specify that the total number of fruits per
plant and the responses to fertilization and clipping could
vary randomly across populations and across genotypes
within a population.

However, GLMMs are surprisingly challenging to use
even for statisticians. Although several software packages
can handle GLMMs (Table 1), few ecologists and evolution-
ary biologists are aware of the range of options or of the
possible pitfalls. In reviewing papers in EE since 2005
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Glossary

Bayesian statistics: a statistical framework based on combining data

with subjective prior information about parameter values in order to

derive posterior probabilities of different models or parameter

values.

Bias: inaccuracy of estimation, specifically the expected difference

between an estimate and the true value.

Block random effects: effects that apply equally to all individuals

within a group (experimental block, species, etc.), leading to a single

level of correlation within groups.

Continuous random effects: effects that lead to between-group cor-

relations that vary with distance in space, time or phylogenetic

history.

Crossed random effects: multiple random effects that apply indepen-

dently to an individual, such as temporal and spatial blocks in the same

design, where temporal variability acts on all spatial blocks equally.

Exponential family: a family of statistical distributions including the

normal, binomial, Poisson, exponential and gamma distributions.

Fixed effects: factors whose levels are experimentally determined or

whose interest lies in the specific effects of each level, such as effects

of covariates, differences among treatments and interactions.

Frequentist (sampling-based) statistics: a statistical framework

based on computing the expected distributions of test statistics in

repeated samples of the same system. Conclusions are based on the

probabilities of observing extreme events.

Generalized linear models (GLMs): statistical models that assume

errors from the exponential family; predicted values are determined

by discrete and continuous predictor variables and by the link func-

tion (e.g. logistic regression, Poisson regression) (not to be confused

with PROC GLM in SAS, which estimates general linear models such

as classical ANOVA.).

Individual random effects: effects that apply at the level of each

individual (i.e. ‘blocks’ of size 1).

Information criteria and information-theoretic statistics: a statistical

framework based on computing the expected relative distance of

competing models from a hypothetical true model.

Linear mixed models (LMMs): statistical models that assume

normally distributed errors and also include both fixed and

random effects, such as ANOVA incorporating a random effect.

Link function: a continuous function that defines the response of

variables to predictors in a generalized linear model, such as logit

and probit links. Applying the link function makes the expected value

of the response linear and the expected variances homogeneous.

Markov chain Monte Carlo (MCMC): a Bayesian statistical technique

that samples parameters according to a stochastic algorithm that con-

verges on the posterior probability distribution of the parameters,

combining information from the likelihood and the posterior distri-

butions.

Maximum likelihood (ML): a statistical framework that finds the

parameters of a model that maximizes the probability of the observed

data (the likelihood). (See Restricted maximum likelihood.)

Model selection: any approach to determining the best of a set of

candidate statistical models. Information-theoretic tools such as AIC,

which also allow model averaging, are generally preferred to older

methods such as stepwise regression.

Nested models: models that are subsets of a more complex model,

derived by setting one or more parameters of the more complex

model to a particular value (often zero).

Nested random effects: multiple random effects that are hierarchi-

cally structured, such as species within genus or subsites within sites

within regions.

Overdispersion: the occurrence of more variance in the data than

predicted by a statistical model.

Pearson residuals: residuals from a model which can be used to

detect outliers and nonhomogeneity of variance.

Random effects: factors whose levels are sampled from a larger

population, or whose interest lies in the variation among them rather

than thespecific effects of each level.Theparameters of random effects

are the standard deviations of variation at a particular level (e.g. among

experimental blocks). The precise definitions of ‘fixed’ and ‘random’

are controversial; the status of particular variables depends on exper-

imental design and context [16,53].

Restricted maximum likelihood (REML): an alternative to ML that

estimates the random-effect parameters (i.e. standard deviations)

averaged over the values of the fixed-effect parameters; REML esti-

mates of standard deviations are generally less biased than corre-

sponding ML estimates.
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found by Google Scholar, 311 out of 537 GLMM analyses
(58%) used these tools inappropriately in some way (see
online supplementary material). Here we give a broad but
practical overview of GLMM procedures.

Whereas GLMMs themselves are uncontroversial,
describing how to use them to analyze data necessarily
touches oncontroversial statistical issues suchas thedebate
over null hypothesis testing [17], the validity of stepwise
regression [18] and the use of Bayesian statistics [19].
Others have thoroughly discussed these topics (e.g. [17–

19]); we acknowledge the difficulty while remaining agnos-
tic. We first discuss the estimation algorithms available for
fittingGLMMs todata tofindparameter estimates.We then
describe the inferential procedures for constructing confi-
dence intervals on parameters, comparing and selecting
models and testing hypotheses with GLMMs. Finally, we
summarize reasonable ‘best practices’ for using these tech-
niques to answer ecological and evolutionary questions.

Estimation
Estimating the parameters of a statistical model is a key
step in most statistical analyses. For GLMMs, these
parameters are the fixed-effect parameters (effects of cov-
ariates, differences among treatments and interactions: in
Box 1, these are the overall fruit set per individual and the
effects of fertilization, clipping and their interaction on
fruit set) and random-effect parameters (the standard
deviations of the random effects: in Box 1, variation in
fruit set, fertilization, clipping and interaction effects
across genotypes and populations). Many modern statisti-
cal tools, includingGLMMestimation, fit these parameters
by maximum likelihood (ML). For simple analyses where
the response variables are normal, all treatments have
equal sample sizes (i.e. the design is balanced) and all
random effects are nested effects, classical ANOVA
methods based on computing differences of sums of squares
give the same answers as ML approaches. However, this
equivalence breaks down for more complex LMMs or for
GLMMs: to find ML estimates, one must integrate like-
lihoods over all possible values of the random effects
([20,21] Box 2). For GLMMs this calculation is at best
slow, and atworst (e.g. for large numbers of random effects)
computationally infeasible.

Statisticians have proposed various ways to approxi-
mate the likelihood to estimate GLMM parameters, in-
cluding pseudo- and penalized quasilikelihood (PQL [22–

24]), Laplace approximations [25] and Gauss-Hermite
quadrature (GHQ [26]), as well as Markov chain Monte
Carlo (MCMC) algorithms [27] (Table 1). In all of these
approaches, one must distinguish between standard ML
estimation, which estimates the standard deviations of the
random effects assuming that the fixed-effect estimates are
precisely correct, and restricted maximum likelihood
(REML) estimation, a variant that averages over some
of the uncertainty in the fixed-effect parameters [28,29].



Box 1. A GLMM example: genotype-by-environment interaction in the response of Arabidopsis to herbivory

We used GLMMs to estimate gene-by-environment interaction in

Arabidopsis response to simulated herbivory [54,55]. The fixed effects

quantify the overall effects (across all genotypes) of fertilization and

clipping; the random effects quantify the variation across genotypes

and populations of the fixed-effect parameters. The random effects

are a primary focus, rather than a nuisance variable.

Because the response variable (total fruits per individual) was count

data, we started with a Poisson model (log link). The mean number of

fruits per plant within genotype � treatment groups was sometimes

<5, so we used Laplace approximation. Our ‘full’ model used fixed

effects (nutrient + clipping + nutrient � clipping) and two sets of

random effects that crossed these fixed effects with populations and

genotypes within populations. Although populations were located

within three larger regions, we ignored regional structure owing to

insufficient replication. We also included two experimental design

variables in all models, using fixed effects because of their small

number of levels (both <4; Box 4). Laplace estimation methods for the

full model converged easily.

The residuals indicated overdispersion, so we refitted the data with

a quasi-Poisson model. Despite the large estimated scale parameter

(10.8), exploratory graphs found no evidence of outliers at the level of

individuals, genotypes or populations. We used quasi-AIC (QAIC),

using one degree of freedom for random effects [49], for random-

effect and then for fixed-effect model selection.

QAIC scores indicated that the model with all genotype-level

random effects (nutrient, clipping and their interaction) and no

population-level grouping was best; a model with population-level

variation in overall fruit set was nearly as good (DQAIC = 0.6), and

models with population-level variation in fertilization or clipping

effects (but not both) were reasonable (DQAIC < 10). Because these

models gave nearly identical fixed-effect estimates, model averaging

was unnecessary. QAIC comparisons supported a strong average

nutrient effect across all genotypes (threefold difference in fruit set),

with weaker effects of clipping (50% decrease in fruit set, DQAIC = 1.9)

and nutrient � clipping interaction (twofold increase, or compensat-

ing effects: DQAIC = 3.4).

The pattern of random effects (Figure I) indicated considerable

heterogeneity across genotypes, with standard deviation � 1 (at least

as large as the fixed effects). Although the overall tendency for

nutrients to allow plants to compensate for damage (fixed nutrient � -

clipping interaction) is weak, we infer strong gene-by-environment

interaction at the level of individual genotypes.

Figure I. Random effects of genotypes for each model parameter—differences of

genotype-specific parameter values from the overall average. Diagonal panels give

labels (intercept = log fruit set of control; nutrient = increase in log fruit set due to

nutrient; clipping = decrease due to clipping; interaction = nutrient� clipping

interaction) and scales for subplots. Color indicates region of origin.
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ML underestimates random-effect standard deviations,
except in very large data sets, but is more useful for
comparing models with different fixed effects.

PQL is the simplest and most widely used GLMM
approximation. Its implementation in widely available
Table 1. Capabilities of different software packages for GLMM analy
fitted and available inference methods

Penalized

quasilikelihood

Laplace Gauss-

Hermite

quadrature

Cros

rand

effec

SAS PROC GLIMMIX U U
a

U
a

U

PROC NLMIXED U

R glmmPQL U

glmmML U U

glmer U (U) U

glmmADMB U

GLMM U U?

GenStat/

ASREML

U U U

AD Model

Builder

U U U

HLM U

GLLAAMM

(Stata)

WinBUGS U

Abbreviations: BW, between–within; dist, specified distribution (e.g. negative binomial
aVersion 9.2 only.
statistical packages has encouraged the use of GLMMs
in many areas of EE, including behavioral and community
ecology, conservation biology and quantitative and evol-
utionary genetics [30]. Unfortunately, PQL yields biased
parameter estimates if the standard deviations of the
sis: estimation methods, scope of statistical models that can be

sed

om

ts

Wald x2 or

Wald F

tests

Degrees of

freedom

MCMC

sampling

Continuous

spatial/

temporal

correlation

Overdispersion

U BW, S, KR U QL

U BW, S, KR Dist

U BW U QL

(U) QL

Dist

U U QL

U Dist

U

U Dist

U

); KR, Kenward-Roger; QL, quasilikelihood; S, Satterthwaite.
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Box 2. Estimation details: evaluating GLMM likelihoods

Consider data x with a single random effect u (e.g. the difference of

blocks from the overall mean) with variance s2 (e.g. the variance

among blocks) and fixed-effect parameter m (e.g. the expected

difference between two treatments). The overall likelihood is RP(ujs2)
2) L(xjm,u) du: the first term [P(ujs2)] gives the probability of drawing a

particular block value u from the (normally distributed) block

distribution, while the second term [L(xjm,u)] gives the probability of

observing the data given the treatment effect and the particular block

value. Integrating computes the average likelihood across all possible

block values, weighted by their probability [28]. Procedures for GLMM

parameter estimation approximate the likelihood in several different

ways (Table I):

� Penalized quasilikelihood alternates between (i) estimating fixed

parameters by fitting a GLM with a variance–covariance matrix

based on an LMM fit and (ii) estimating the variances and

covariances by fitting an LMM with unequal variances calculated

from the previous GLM fit. Pseudolikelihood, a closely related

technique, estimates the variances in step ii differently and

estimates a scale parameter to account for overdispersion (some

authors use these terms interchangeably).

� The Laplace method approximates the likelihood by assuming that

the distribution of the likelihood (not the distribution of the data) is

approximately normal, making the likelihood function quadratic on

the log scale and allowing the use of a second-order Taylor

expansion.

� Gauss-Hermite quadrature approximates the likelihood by picking

optimal subdivisions at which to evaluate the integrand. Adaptive

GHQ incorporates information from an initial fit to increase

precision.

� Markov chain Monte Carlo algorithms sample sequentially from

random values of the fixed-effect parameters, the levels of the

random effects (u in the example above) and random-effect

parameters (s2 above), in a way that converges on the distribution

of these values.

These procedures are unnecessary for linear mixed models,

although mistaken use of GLMM techniques to analyze LMMs is

widespread in the literature (see online supplement).

Table I. Techniques for GLMM parameter estimation, their advantages and disadvantages and the software packages that
implement them

Technique Advantages Disadvantages Software

Penalized quasilikelihood Flexible, widely implemented Likelihood inference inappropriate;

biased for large variance or small means

PROC GLIMMIX (SAS), GLMM

(Genstat), glmmPQL (R), glmer (R)

Laplace approximation More accurate than PQL Slower and less flexible than PQL PROC GLIMMIX [56], glmer (R),

glmm.admb (R), AD Model Builder,

HLM

Gauss-Hermite quadrature More accurate than Laplace Slower than Laplace; limited to

2–3 random effects

PROC GLIMMIX [56], PROC

NLMIXED (SAS), glmer (R), glmmML

(R)

Markov chain Monte Carlo Highly flexible, arbitrary number

of random effects; accurate

Very slow, technically challenging,

Bayesian framework

WinBUGS, JAGS, MCMCpack, (R),

AD Model Builder
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random effects are large, especially with binary data (i.e.
binomial data with a single individual per observation)
[31,32]. Statisticians have implemented several improved
versions of PQL, but these are not available in the most
common software packages ([32,33]). As a rule of thumb,
PQL works poorly for Poisson data when the mean number
of counts per treatment combination is less than five, or for
binomial data where the expected numbers of successes
and failures for each observation are both less than five
(which includes binary data) [30]. Nevertheless, our litera-
ture review found that 95% of analyses of binary responses
(n = 205), 92% of Poisson responses with means less than 5
(n = 48) and 89% of binomial responses with fewer than 5
successes per group (n = 38) used PQL.

Another disadvantage of PQL is that it computes
a quasilikelihood rather than a true likelihood. Many
statisticians feel that likelihood-based methods should
not be used for inference (e.g. hypothesis testing, AIC
ranking) with quasilikelihoods (see Inference section
below [26]).

Two more accurate approximations are available
[25,30]. As well as reducing bias, Laplace approximation
(Box 2 [25]) approximates the true GLMM likelihood
rather than a quasilikelihood, allowing the use of like-
lihood-based inference. Gauss-Hermite quadrature [26] is
more accurate still, but is slower than Laplace approxi-
mation. Because the speed of GHQ decreases rapidly with
increasing numbers of random effects, it is not feasible for
analyses with more than two or three random factors.
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In contrast to methods that explicitly integrate over
random effects to compute the likelihood, MCMC methods
generate random samples from the distributions of
parameter values for fixed and random effects. MCMC is
usually used in a Bayesian framework, which incorporates
prior information based on previous knowledge about the
parameters or specifies uninformative (weak) prior distri-
butions to indicate lack of knowledge. Inference is based on
summary statistics (mean, mode, quantiles, etc.) of the
posterior distribution, which combines the prior distri-
bution with the likelihood [34]. Bayesian MCMC gives
similar answers to maximum-likelihood approaches when
data sets are highly informative and little prior knowledge
is assumed (i.e. when the priors are weak). Unlike the
methods discussed above, MCMCmethods extend easily to
consider multiple random effects [27], although large data
sets are required. In addition to its Bayesian flavor (which
might deter some potential users), MCMC involves several
potentially difficult technical details, including making
sure that the statistical model is well posed; choosing
appropriate priors [35]; choosing efficient algorithms for
large problems [36]; and assessing when chains have run
long enough for reliable estimation [37–39]. Statisticians
are also developing alternative tools that exploit the com-
putational advantages of MCMC within a frequentist
framework [40,41], but these approaches have not been
widely tested.

Although many estimation tools are only available in a
few statistics packages, or are difficult to use, the situation



Figure 1. Decision tree for GLMM fitting and inference. Conditions on the Poisson and binomial distributions along the right branch refer to penalized quasilikelihood (PQL)

rules of thumb [30]: to use PQL, Poisson distributions should have mean > 5 and binomial distributions should have the minimum of the number of successes and failures

> 5. MCEM = Monte Carlo expectation-maximization [40].
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is gradually improving as software developers and publish-
ers improve their offerings. Which estimation technique is
most useful in a given situation depends on the complexity
of the model, as well as computation time, availability of
software and applicability of different inference methods
(Figure 1).

Inference

After estimating parameter values for GLMMs, the next
step is statistical inference: that is, drawing statistical and
biological conclusions from the data by examining the
estimates and their confidence intervals, testing hypoth-
eses, selecting the best model(s) and evaluating differences
in goodness of fit among models. We discuss three general
types of inference: hypothesis testing, model comparison
and Bayesian approaches. Frequentist hypothesis testing
compares test statistics (e.g. F statistics in ANOVA) to
their expected distributions under the null hypothesis,
estimating a p value to determine whether one can reject
the null hypothesis. Model selection, by contrast, compares
fits of candidate models. One can select models either by
using hypothesis tests (i.e. testing simpler nested models
againstmore complexmodels) [42] or by using information-
theoretic approaches, which use measures of expected
predictive power to rank models or average their predic-
tions [43]. Bayesian methods have the same general scope
as frequentist or information-theoretic approaches, but
differ in their philosophical underpinnings as well as in
the specific procedures used.

Hypothesis testing

Wald Z, x2, t and F tests for GLMMs test a null hypothesis
of no effect by scaling parameter estimates or combinations
of parameters by their estimated standard errors and
comparing the resulting test statistic to zero [44]. Wald
Z and x2 tests are only appropriate for GLMMs without
overdispersion, whereas Wald t and F tests account for the
uncertainty in the estimates of overdispersion [29]. This
uncertainty depends on the number of residual degrees of
freedom, which can be very difficult to calculate because
the effective number of parameters used by a random effect
lies somewhere between 1 (i.e. a single standard deviation
131



Box 3. Inference details

Drawing inferences (e.g. testing hypotheses) from the results of

GLMM analyses can be challenging, and in some cases statisticians

still disagree on appropriate procedures (Table I). Here we highlight

two particular challenges, boundary effects and calculating degrees of

freedom.

Boundary effects

Many tests assume that the null values of the parameters are not on

the boundary of their allowable ranges. In particular, the null

hypothesis for random effects (s = 0) violates this assumption,

because standard deviations must be �0 [45]. Likelihood ratio tests

that compare the change in deviance between nested models that

differ by v random-effect terms against a x2 distribution with v

degrees of freedom (x2
v ) are conservative, increasing the risk of type II

errors. Mixtures of x2
v and x2

v�1 distributions are appropriate in simple

cases [57–59]; for a single variance parameter (v = 1), this is equivalent

to dividing the standard x2
1 p value by 2 [29]. Information-theoretic

approaches suffer from analogous problems [48,60].

Calculating degrees of freedom

The degrees of freedom (df) for random effects, needed for Wald t or

F tests or AICc, must be between 1 and N � 1 (where N is the number

of random-effect levels). Software packages vary enormously in their

approach to computing df [61]. The simplest approach (the default in

SAS) uses the minimum number of df contributed by random effects

that affect the term being tested [29]. The Satterthwaite and

Kenward-Roger (KR) approximations [29,62] use more complicated

rules to approximate the degrees of freedom and adjust the standard

errors. KR, only available in SAS, generally performs best (at least for

LMMs [63]). In our literature review, most SAS analyses (63%,

n = 102) used the default method (which is ‘at best approximate, and

can be unpredictable’ [64]). An alternative approach uses the hat

matrix, which can be derived from GLMM estimates. The sample size

n minus the trace t (i.e. the sum of the diagonal elements) of the hat

matrix provides an estimate of the residual degrees of freedom

[43,51]. If the adjusted residual df are >25, these details are less

important.

Accounting for boundary effects and computing appropriate

degrees of freedom is still difficult. Researchers should use appropriate

corrections when they are available, and understand the biases

that occur in cases where such corrections are not feasible

(e.g. ignoring boundary effects makes tests of random effects

conservative).

Table I. Techniques for GLMM inferences, their advantages and disadvantages and the software packages that implement them

Method Advantages Disadvantages Software

Wald tests (Z, x2, t, F) Widely available, flexible, OK for

quasilikelihood (QL)

Boundary issues; poor for random effects; t and

F require residual df

GLIMMIX, NLMIXED (SAS),

glmmPQL (R)

Likelihood ratio test Better than Wald tests for random

effects

Bad for fixed effects without large sample

sizes; boundary effects; inappropriate for QL

NLMIXED (SAS), lme4 (R)

Information criteria Avoids stepwise procedures; provides

model weights and averaging; QAIC

applies to overdispersed data

Boundary effects; no p value; requires residual

df estimate for AICc

GLIMMIX, NLMIXED (SAS),

lme4 (R)

Deviance information

criterion

Automatically penalizes model

complexity

Requires MCMC sampling WinBUGS
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parameter) and N � 1 (i.e. one parameter for each
additional level of the random effect; [29] Box 3). For
random effects, these tests (in common with several other
GLMM inference tools) suffer from boundary effects
because the null values of the parameters lie at the edge
of their feasible range ([45] Box 3): that is, the standard
deviations can only be greater and not less than their null-
hypothesis value of zero.

The likelihood ratio (LR) test determines the contri-
bution of a single (random or fixed) factor by comparing
the fit (measured as the deviance, i.e. �2 times the log-
likelihood ratio) for models with and without the factor,
namely nested models. Although widely used throughout
statistics, the LR test is not recommended for testing fixed
effects in GLMMs, because it is unreliable for small to
moderate sample sizes (note that LR tests on fixed effects,
or any comparison of models with different fixed effects,
also require ML, rather than REML, estimates) [28]. The
LR test is only adequate for testing fixed effects when both
the ratio of the total sample size to the number of fixed-
effect levels being tested [28] and the number of random-
effect levels (blocks) [44,46] are large. We have found little
guidance and no concrete rules of thumb in the literature
on this issue, and would recommend against using the LR
test for fixed effects unless the total sample size and
numbers of blocks are very large. The LR test is generally
appropriate for inference on random factors, although
corrections are needed to address boundary problems
similar to those of the Wald tests [28,45]. In general,
because Wald tests make stronger assumptions, LR tests
132
are preferred for inference on random effects [47]
(Figure 1).

Model selection and averaging

LR tests can assess the significance of particular factors
or, equivalently, choose the better of a pair of nested
models, but some researchers have criticized model selec-
tion via such pairwise comparisons as an abuse of hy-
pothesis testing [18,43]. Information-theoretic model
selection procedures, by contrast, allow comparison of
multiple, nonnested models. The Akaike information
criterion (AIC) and related information criteria (IC) use
deviance as a measure of fit, adding a term to penalize
more complex models (i.e. greater numbers of
parameters). Rather than estimating p values, infor-
mation-theoretic methods estimate statistics that
quantify the magnitude of difference between models in
expected predictive power, which one can then assess
using rules of thumb [43]. ICs also provide a natural
basis for averaging parameter estimates and predictions
across models, which can provide better estimates as well
as confidence intervals that correctly account for model
uncertainty [17]. Variants of AIC are useful when sample
sizes are small (AICc), when the data are overdispersed
(quasi-AIC, QAIC) or when one wants to identify the
number of parameters in a ‘true’ model (Bayesian or
Schwarz information criterion, BIC) [43]. The main con-
cerns with using AIC for GLMMs (boundary effects [48]
and estimation of degrees of freedom for random effects
[49]) mirror those for classical statistical tests (Box 3).



Box 4. Procedures: creating a full model

Here we outline a general framework for constructing a full (most

complex) model, the first step in GLMM analysis. Following this

process, one can then evaluate parameters and compare submodels

as described in the main text and in Figure 1.

1. Specify fixed (treatments or covariates) and random effects

(experimental, spatial or temporal blocks, individuals, etc.). Include

only important interactions. Restrict the model a priori to a feasible

level of complexity, based on rules of thumb (>5–6 random-effect

levels per random effect and >10–20 samples per treatment level

or experimental unit) and knowledge of adequate sample sizes

gained from previous studies [64,65].

2. Choose an error distribution and link function (e.g. Poisson

distribution and log link for count data, binomial distribution and

logit link for proportion data).

3. Graphical checking: are variances of data (transformed by the link

function) homogeneous across categories? Are responses of

transformed data linear with respect to continuous predictors?

Are there outlier individuals or groups? Do distributions within

groups match the assumed distribution?

4. Fit fixed-effect GLMs both to the full (pooled) data set and within

each level of the random factors [28,50]. Estimated parameters

should be approximately normally distributed across groups

(group-level parameters can have large uncertainties, especially

for groups with small sample sizes). Adjust model as necessary

(e.g. change link function or add covariates).

5. Fit the full GLMM.

Insuff ic ient computer memory or too slow: reduce

model complexity. If estimation succeeds on a subset of the data,

try a more efficient estimation algorithm (e.g. PQL if appropriate).

Failure to converge (warnings or errors): reduce model complexity

or change optimization settings (make sure the resulting answers

make sense). Try other estimation algorithms.

Zero variance components or singularity (warnings or errors):

check that the model is properly defined and identifiable (i.e. all

components can theoretically be estimated). Reduce model com-

plexity.

Adding information to the model (additional covariates, or new

groupings for random effects) can alleviate problems, as will

centering continuous covariates by subtracting their mean [50]. If

necessary, eliminate random effects from the full model, dropping

(i) terms of less intrinsic biological interest, (ii) terms with very

small estimated variances and/or large uncertainty, or (iii) inter-

action terms. (Convergence errors or zero variances could indicate

insufficient data.)

6. Recheck assumptions for the final model (as in step 3) and check

that parameter estimates and confidence intervals are reasonable

(gigantic confidence intervals could indicate fitting problems). The

magnitude of the standardized residuals should be independent of

the fitted values. Assess overdispersion (the sum of the squared

Pearson residuals should be x2 distributed [66,67]). If necessary,

change distributions or estimate a scale parameter. Check that a

full model that includes dropped random effects with small

standard deviations gives similar results to the final model. If

different models lead to substantially different parameter esti-

mates, consider model averaging.
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Bayesian approaches

Bayesian approaches to GLMM inference offer several
advantages over frequentist and information-theoretic
methods [50]. First, MCMC provides confidence intervals
on GLMM parameters (and hence tests of whether those
parameters could plausibly equal zero) in a way that
naturally averages over the uncertainty in both the fixed-
and random-effect parameters, avoiding many of the diffi-
cult approximations used in frequentist hypothesis testing.
Second, Bayesian techniques define posterior model prob-
abilities that automatically penalizemore complexmodels,
providing a way to select or average over models. Because
these probabilities can be very difficult to compute, Baye-
sian analyses typically use two common approximations,
the Bayesian (BIC) and deviance (DIC) information
criteria [51]. The BIC is similar to the AIC, and similarly
requires an estimate of the number of parameters (Box 3).
The DIC makes weaker assumptions, automatically esti-
mates a penalty for model complexity and is automatically
calculated by the WinBUGS program (http://www.mrc-
bsu.cam.ac.uk/bugs). Despite uncertainty among statis-
ticians about its properties [51], the DIC is rapidly gaining
popularity in ecological and evolutionary circles.

One can also use Bayesian approaches to compute
confidence intervals for model parameters estimated by
frequentist methods [52] by using a specialized MCMC
algorithm that samples from the posterior distribution of
the parameters (assuming uninformative priors). This
approach represents a promising alternative that takes
uncertainty in both fixed- and random-effect parameters
into account, capitalizes on the computational efficiency
of frequentist approaches and avoids the difficulties of
estimating degrees of freedom for F tests, but it has only
been implemented very recently [52].

Procedures

Given all of this information, how should one actually use
GLMMs to analyze data (Box 4)? Unfortunately, we cannot
recommend a single, universal procedure because different
methods are appropriate for different problems (see
Figure 1) and, as made clear by recent debates [42], how
one analyzes data depends strongly on one’s philosophical
approach (e.g. hypothesis testing versus model selection,
frequentist versus Bayesian). In any case, we strongly
recommend that researchers proceed with caution by mak-
ing sure that they have a good understanding of the basics
of linear and generalized mixed models before taking the
plunge into GLMMs, and by respecting the limitations of
their data.

After constructing a full model (Box 4), one must choose
among philosophies of inference. The first option is classi-
cal backward stepwise regression using the LR test to test
random effects and Wald x2 tests, Wald F tests or MCMC
sampling to test fixed effects, discarding effects that do not
differ significantly from zero. Whereas statisticians
strongly discourage automatic stepwise regression with
many potential predictors, disciplined hypothesis testing
for small amounts of model reduction is still considered
appropriate in some situations [28].

Alternatively, information-theoretic tools can select
models of appropriate complexity [43]. This approach finds
the model with the highest estimated predictive power,
without data snooping, assuming that we can accurately
estimate the number of parameters (i.e. degrees of free-
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dom) for random effects [49]. Ideally, rather than selecting
the ‘best’ model, one would average across all reasonably
well fitting models (e.g. DAIC < 10), using either IC or
Bayesian tools [43], although the additional complexity
of this step could be unnecessary if model predictions
are similar or if qualitative understanding rather than
quantitative prediction is the goal of the study.

Finally, one could assume that all of the effects included
in the full model are really present, whether statistically
significant or not. One would then estimate parameters
and confidence intervals from the full model, avoiding any
data snooping problems but paying the penalty of larger
variance in predictions; many Bayesian analyses, especi-
ally those of large data sets where loss of precision is less
important, take this approach [50].

It is important to distinguish between random effects as
a nuisance (as in classical blocked experimental designs)
and as a variable of interest (as in many evolutionary
genetic studies, or in ecological studies focused on hetero-
geneity). If random effects are part of the experimental
design, and if the numerical estimation algorithms do not
break down, then one can choose to retain all random
effects when estimating and analyzing the fixed effects.
If the random effects are a focus of the study, one must
choose between retaining them all, selecting some by
stepwise or all-model comparison, or averaging models.

Conclusion
Ecologists and evolutionary biologists have much to gain
fromGLMMs. GLMMs allow analysis of blocked designs in
traditional ecological experiments with count or pro-
portional responses. By incorporating random effects,
GLMMs also allow biologists to generalize their con-
clusions to new times, places and species. GLMMs are
invaluable when the random variation is the focus of
attention, particularly in studies of ecological heterogen-
eity or the heritability of discrete characters.

In this review, we have encouraged biologists to choose
appropriate tools for GLMM analyses, and to use them
wisely.Withtherapidadvancementof statistical tools,many
of the challenges emphasized here will disappear, leaving
only the fundamental challenge of posing feasible biological
questions and gathering enough data to answer them.
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