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Summary

1. To predict how plant populations may respond to changes in the environment or management,

it is necessary to quantify the factors influencing their population dynamics and distributions over

large spatial and ⁄or temporal scales.

2. Most studies of plant population dynamics monitor demography at the sub-metre scale. Extrap-

olation or prediction from these studies is difficult because the data are sparse, parameter error

cannot be ascertained and the datamay not cover the range of expected environmental conditions.

3. Here, we describe a survey method based on density-structured models. These models use a

discrete density state variable andmodel rates of transition between density states. Although analyt-

ically simple, these models are empirically useful as they may be parameterized using readily

collected data. They also offer an empirical link between meso-scale and macro-scale population

dynamics.

4. For a large-scale study on annual weeds, we describe the rapid estimation of densities using

relatively coarse density estimates using visual estimates of density. Using information from

detailed surveys, we describe how we use the method to measure populations of annual plants to a

scale of 20 · 20 m in areas of up to 4 ha per population within 500 different arable fields over

3 years.

5. We show that the approach taken is repeatable within and among observers, and we quantify the

degree of measurement error. We give examples of the resultant data, and compare these with the

data obtained from nested small-scale plots. Finally, we show how the information from this type

of survey can be incorporated into population models and used to measure within-population and

inter-annual flux.

Key-words: modelling, observation error, population ecology, sampling, surveys, transition

rate

Introduction

Understanding the dynamics of animal and plant populations,

and predicting how they change over time, has been a key

motivator in ecology (Lotka 1932; Krebs 1972; Begon, Town-

send, & Harper 2006). Factors such as climate, soil, manage-

ment and biotic interactions determine the distributions of

species, and vary over large geographical scales. Forecasts of

the impact of changing environments on ecological popula-

tions are consequently of strategic importance, especially

considering the unprecedented changes in environment and

climate (Millenium Ecosystem Assessment 2005; Sutherland

2006; IPCC 2007). A limitation, however, is that predictions

are needed that apply over spatial and temporal scales far lar-

ger than can be easily studied using conventional approaches

(e.g. Sutherland &Watkinson 2001). Models are an important

tool in allowing us tomake predictions at the relevant scales.

In plant ecology, models are frequently used, for example, in

modelling the evolution of life-histories (Childs et al. 2003;

Ellner & Rees 2003, 2005; Rees et al. 2006), weed ecology (e.g.

Firbank 1985; Doyle, Cousens, & Moss 1986; Firbank &

Watkinson 1986; Freckleton & Watkinson 1998; Maxwell &

Luschei 2004) and simulating harvesting (Boot & Gullison

1995;Olmsted&Alvarez-Buylla 1995; Freckleton&Watkinson

1998, Matos, Freckleton, & Watkinson 1999; Freckleton
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et al. 2003). Ideally models should be tested and be able to

predict accurately the changes in dynamics and distributions

of populations that may occur as a result of changes in the

environment or management, alongside the degree of uncer-

tainty in those predictions (Cousens 1995; Ludwig 1996,

1999; Ludwig, Mangel, & Haddad 2001; Clark 2003, 2005;

Freckleton et al. 2008; Freckleton & Stephens 2009).

A large proportion of models and field studies of plant pop-

ulation dynamics have relied on the study and monitoring of

plant densities using detailed demographic methods. The aim

is to parameterize a model for population dynamics of the

form (Watkinson 1980;Rees, Grubb, &Kelly 1996; Silvertown

&Charlesworth 2001):

N tþ 1ð Þ ¼ k tð ÞN tð Þf N tð Þ½ � eqn 1

N(t) and N(t + 1) are the numbers or densities of plants in

years t and t + 1,N being the state variable of the model. k(t)
is the density-independent population growth rate in year t,

and measures the rate of population growth resulting from

seed production, clonal growth and survival as well as

immigration and emigration. These may vary from year to

year or from place to place. The function f[N(t)] measures den-

sity-dependence in the population dynamics, resulting, for

example, from competition between plants for resources (Wat-

kinson 1980) or negative effects of density on germination

(Lintell Smith et al. 1999; Watkinson, Freckleton, & Forrester

2000). A simple model of a similar form to eqn (1) can also

describe the stochastic population dynamics of an annual plant

with a persistent seedbank (MacDonald & Watkinson 1981;

Ellner 1984).

There are several difficult stages in parameterizing a model

from field data, and in using models to make predictions. One

key limitation is that it is frequently impossible to obtain suffi-

cient data to measure all parameters, or to estimate the vari-

ance in parameters resulting from spatial or temporal

variability. In addition, the density-dependent function f[N(t)]

has to be estimated, but this requires demographic data from a

range of densities and is expected to be subject to great vari-

ability (Ramula & Buckley 2009). Often it is possible to use the

literature to estimate parameters, and this approach has been

used in the development of models that incorporate demo-

graphic parameters from the whole life-cycle (e.g. Rees &

Paynter 1997; Freckleton&Watkinson 1998; termed ‘no holds

barred’ estimation by Caswell 2000). In other cases, the esti-

mates are derived from local, small-scale perturbations.

An important limitation of demographic models is that

there are conditions under which predictions may be suspect,

particularly for populations with potentially fast rates of

growth such as invasive and arable weeds (Freckleton et al.

2008). In such populations, models may be numerically unsta-

ble with the consequence that very small changes to parameter

values may have enormous effects on model predictions. This

is exacerbated if the uncertainties in model parameters are not

quantified or if the uncertainty in model predictions is unsatis-

factorily large (Ludwig 1996, 1999; Ludwig, Mangel, & Had-

dad 2001). Another complication is that data usually contain

measurement error, which has to be accounted for in themodel

fitting process (Shenk, White, & Burnham 1998; Dennis et al.

2006; Freckleton et al. 2006). Quantifying census error is an

extremely important consideration in the design of a long-term

monitoring programme.

A further limiting constraint is that demographic data are

relatively costly in terms of time, effort and expense (e.g. Con-

dit 1998; Clay et al. 1999; Qi et al. 2008). As a result, most

studies in ecology are usually at spatial scales of <1 m2, and

are of short duration (Kareiva & Anderson 1988; May 1989).

For example, we enumerated plot size in all papers published

in Weed Research vol. 48 (2008). Twenty-one studies included

field research, and 84%of these used sample plots smaller than

1 m2. As plant populations are usually patchily distributed at

scales exceeding this (e.g. Kunin 1998), small-scale studies have

to be extrapolated if they are to predict population dynamics

at relevant spatial scales.

Alternative modelling formulations exist, however. In a

study predicting the population dynamics of an invasive grass,

Taylor & Hastings (2004) used a ‘density-structured’

approach. Their approach differed from previous population

models in that the state variable in this model was a discrete

density state. The model then modelled the rate at which sites

moved between these density states, with the parameters of the

model essentially being a matrix of transition probabilities.

Shea & Possingham (2000) and Bogich & Shea (2008) have

applied similar approaches tometapopulationmodels.

Compared with eqn (1), a density-structured model has the

following structure:

N tþ 1ð Þ ¼ TN tð Þ eqn 2

In eqn (2) N is a vector of density states, compared with the

continuous density state variable in eqn (1), and T is a transi-

tion matrix measuring the transitions between the density

states. An entry qij of matrix T is the probability that a site in

state i in one time period will be in state j in the next. The

matrix T summarizes the mappings between all density states,

and expresses the outcome probabilistically, hence T encapsu-

lates both the nonlinearity in population growth rates (f[N(t)]

in eqn 1) as well as the temporal stochasticity in the model

parameters.

This might, initially, appear an unsophisticated approach in

that population dynamics are not modelled explicitly, but

instead are summarized by coarse transition probabilities.

However, this modelling framework offers several empirical

and analytical advantages. In empirical terms, there are two

key advantages to this approach: first, the data for parameter-

izing a density-structured model should be relatively easy to

collect as discrete density states should be easier and quicker

to assign than detailed enumeration of population densities;

second, the errors in the data are straightforward to assess via

replicated surveys, which should be relatively quick and easy

to perform. In analytical terms, these models offer four advan-

tages: first, the transition probabilities should be statistically

straightforward to estimate; second, it is unnecessary to specify

an underlying model for population dynamics as the model is

defined purely by the estimated probabilities, which simplifies
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analysis; third, the model is a simple linear one, which has well

understood properties as it is a special case of a structured

model, for which considerable theory exists (Caswell 2000).

Finally, such models are able to recapture and simulate the

behaviour of populations accurately when comparedwith fully

continuousmodels (Freckleton et al. 2011).

Other studies have attempted to address the shortcomings

of small-scale demographic models in different ways. Remote

sensing can be used to monitor communities at large spatial

scales, but, to date, can only differentiate individual species if

they are very different from the community matrix (Asner &

Martin 2009; Huang&Asner 2009).

This density-structured modelling approach suggests that

data on population dynamics in which the measured state vari-

able is a density state, rather than an estimate of continuous

density, can be used profitably in a range of modelling applica-

tions. Motivated by this, we have developed a field monitoring

approach that relies on estimating density-states with a view to

measuring meso-scale population dynamics rapidly and at

large spatial scales.

Here, we describe the application of this method to measur-

ing the dynamics of populations within communities of annual

plants. The aims of this study were to describe and evaluate the

method, and to illustrate how the approach enables meso-scale

mapping of populations. We show how the data measured

using this approach are robust and repeatable among observ-

ers, demonstrate that it is straightforward to quantify census

error and show that we are able to use the approach to capture

large-scale variation in population density successfully.

Finally, we discuss how this approach can be developed

further.

Materials and methods

OVERVIEW OF APPROACH

The aim of the approach is to assess densities rapidly across large

areas to characterize the spatial distribution of species at a meso-scale

(i.e. greater than individual or small patches of plants), and to capture

within- and among-site variability simultaneously. To provide a fully

integrated approach, the field methods and data collection are geared

to generating rapidly large quantities of continuous, spatially explicit

density-state information for each focal species. For this system to be

cheap, rapid and reliable, it must: (i) accurately relocate the sample

sites from year to year; (ii) accurately and repeatably assign density

states (i.e. estimate the number of individuals) at each site; and (iii)

reflect the biology of the study organism ⁄ s. The ability to relocate

sample sites accurately and repeatedly is essential if temporal changes

are to be assessed. Over small, undisturbed areas, this could be under-

taken with physical markers. However, in most areas, logging of dif-

ferentially corrected GPS coordinates, or even overlaying a D-GPS

grid, will be required to ensure relocation if markers have to be

removed by others between visits.

Rather than rely on detailed counts to enumerate population size,

categorical states are assigned at each sample location. Although

assigning ordered plant abundance categories in small plots has a

long history of study, this method is rarely used to monitor temporal

change and has mostly been used to describe communities (e.g. van

der Maarel 1975, 1979). These categorical density states are based on

prior knowledge of the likely population sizes to be encountered, and

the likely biological significance of these. For example, density states

could be assigned based on the quartiles of the population size

encountered in previous individual-based plots or from a preliminary

census. Fewer than ten density states are recommended to facilitate

ease of assignment in the field. Even with three density states, robust

estimates of population dynamics are obtained (Freckleton et al.

2011). Sample locations can be of any size and arranged in any way

that the investigator desires, but ideally would be continuous, negat-

ing the need for a complex interpolation and easing the logistics of the

census.

DATA: ARABLE WEED SURVEY

We describe an application of this approach tomonitor plant popula-

tions over large spatial and temporal scales. Although we are mainly

concerned in this article with outlining and validating the census

methodology, in this section, we also describe the details of the whole

study so that the data that this survey method generates may be

placed in its wider context.

A suite of arable weed species populations has been monitored in

over 500 fields in 49 farms in three UK counties from 2007. The aim

of this study is to understand the ecological effects of management at

the field scale, for instance, on numbers of weeds, and to link this to

factors that drive management. To do this requires that weed popula-

tions are monitored at the fine scale (within field) to capture the effects

of management on abundance and dynamics, as well as at the large

scale (field- and farm-scale) to encompass a range of types of farming

management and hence to enable a link between the variance in

farmer behaviour and variation in weed population dynamics.

To cover a range of ecological and abiotic conditions, a sample of

49 farms were selected from three primarily arable lowland counties

in central and eastern England: Bedfordshire, Lincolnshire and Nor-

folk. Approximately ten fields that would be in rotation for the subse-

quent 3 years were chosen in consultation with the farmer, to reflect

the range of farm soil conditions and crop rotations.

Weed populations were censused three times a year, in the spring

(crop seedlings), summer (mature, pre-harvest) and autumn (crop

stubbles, and any mature weeds in late-harvest crops such as sugar

beet). To set up the survey, in autumn 2006 and spring 2007, each field

was visited and several tractor wheelings were mapped using a

D-GPS unit [MobileMapper CX, Thales (nowMagellan)]. Using the

GIS software package MapMaker (http://www.mapmaker.com),

grids with 20 · 20 m numbered cells were drawn over each field to

cover at least 2 ha, parallel with the tractor wheelings. Pilot surveys

showed that 20 · 20 m provided a good trade-off between coverage

and precision; ensuring that the grid is parallel to the tractor wheel-

ings aids both walking the fields, and locating the grid cells for ease of

data collection. In subsequent censuses, the density of focal weed spe-

cies in each cell of the grid was recorded on paper maps by one to four

fieldworkers walking in parallel up and down the tractor wheelings.

Location within the field, and grid cell was determined using DGPS

(online Fig. S1).

Density-states for each study species were assigned using the quar-

tiles of densities determined in the FarmScale Evaluation ofGMcrop

trials, the most extensive survey of weed populations in the UK to

date (Table 1, online Fig. S2, Heard et al. 2003). The study species

were chosen to reflect ecologically important species, economically

harmful species, tall, easily seen species, and small-statured species, as

well as amixture ofmonocot- and dicotyledons (Table 1).

It would have been ideal to conduct replicated surveys routinely to

assess the impacts of observer and measurement error. However,
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given that it took 5–6 weeks for two fieldworkers to make single

passes through all sample fields, the resources for routine replication

were insufficient. We therefore conducted a subset of replicated sur-

veys intended to provide this information as well as validate themeth-

ods used, which are described in this article.

We conducted three stages of analysis. First, we compared our den-

sity-state approach to an individual-based approach where we

counted all the individuals within 1 m2 quadrats in the larger

20 · 20 m cells. Second, we compared within and between observer

error in density estimates in two situations, a simple binomial (weed is

present or absent) situation, followed by a more complex multi-state

situation. Finally, we estimated how errors in assigning density states

affected the estimates of transition probabilities for a cell in year t to

year t + 1.

COMPARISON OF DENSITY-STATE AND INDIV IDUAL-

BASED APPROACHES

To demonstrate that density states were reliable indicators of local

density, fields containing a wide range of weed densities were targeted

for more detailed surveys. Six 1 · 1 m quadrats were placed within

randomly selected 20 · 20 m cells using x–y coordinates generated

from a random number table. The number of individuals was then

recorded for each small quadrat. We concentrated this survey effort

on two of the key species in this system, Alopecurus myosuroides

Huds. andChenopodium albumL.

In the case ofA. myosuroides,we studied 1530 1 · 1 m plots in 255

20 · 20 m quadrats across 11 fields of winter wheat on six farms,

whilst 450 1 · 1 m plots were studied in 75 20 · 20 m quadrats

within six fields on four farms forC. album.

We analysed the data using generalized linear models in which the

response variable was the total count of weeds in the six 1 m2 samples

within each 20 · 20 m quadrat; field and density state were main

effects, together with the density state · field interaction. We were

particularly interested in the interaction term because this measures

whether the assigned density states are repeatable (with respect

to mean quadrat density). We used quasipoisson error to deal with

over-dispersion.

QUANTIF ICATION OF OBSERVER ERROR

To determine the census error inherent in assigning density states, we

conducted replicated surveys. As emphasized above, quantifying

the degree of survey error is essential as errors can lead to bias in

parameter estimates and predictions (Freckleton et al. 2006; Royle &

Dorazio 2008). We conducted a series of studies to estimate the vari-

ance in data resulting from measurement error using a subset of the

weed study species. We first conducted a study to measure the vari-

ance in density assignments between observers and subsequently

examined how this variance differed among surveys conducted at

different times and in different fields.

Binomial dataset

In the first replicated surveys, two observers independently surveyed

a field of winter wheat in the summer of 2007, and fields of winter

wheat and spring barley in the summer of 2009. The only weeds pres-

ent in each field were A. myosuroides and Avena fatua in one of two

density states (absent or low density). As detailed below, this allows a

simple analysis of the effects of inter-observer variability that can be

built upon to analysemore complex data.

Multi-state dataset

In the second set of analyses, we used data from autumn 2008 and

summer 2009 from fields where the range of densities was much

greater. In the autumn of 2008, three sugar beet fields were censused

in which the predominant weed was C. album. Two observers

censused each field independently, and the survey was repeated on

two separate days (18 and 19 October 2008). This weed was at a high

density and widely distributed in these fields. Prior to harvest in the

summer of 2009, fields of winter wheat (n = 2), oil seed rape (1),

spring barley (2) and field bean (1) were censused by two observers

independently (23 and 24 July 2009). The bean and wheat fields were

re-censused the following days.

STATIST ICAL ANALYSIS

Analysis of replicated surveys – binomial dataset

In the first dataset, only density states 0 (absent) and 1 (low density)

were recorded. The states recorded by the observers are estimates of

the true state, which is unknown. From these data, we aimed to esti-

mate the frequency with which density states are misclassified, as well

as the frequencies of the density states. Note that the latter cannot be

estimated directly from the data as in the presence of measurement

error, estimated frequencies could be biased (see below).

The probability of correctly classifying states 0 and 1 are denoted

P00 and P11, respectively. The probability of misclassifying state 0 as

state 1 is P01 and the probability of misclassifying state 1 as state 0 is

Table 1. The study species in the arable weed survey

Species Family Common name

Quartiles of density

distribution*

Stature Importance25% 50% 75%

Alopecurus myosuroides Huds Poaceae Blackgrass 160 450 1450 High Economic

Avena fatua L. Poaceae Wild-oat 60 60 170 High Economic

Chenopodium album L. Chenopodiaceae Fat-hen 114 230 630 High Ecological

Fallopia convolvulus (L.) Á. Löve Polygonaceae Black bindweed 60 114 286 Low Ecological

Papaver rhoeas L. Papaveraceae Common poppy 60 170 470 High Visual

Poa annua L. Poaceae Common meadow-grass 400 1430 4614 Low Ecological

Stellaria media L. Caryophyllaceae Common chickweed 114 340 1030 Low Ecological

*Density states are assigned as follows: 0 > L < 25% L; 25%> M < 50%; 50%> H < 75%; 75% > V, values are per 20 m2.
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P10. The frequencies of 0 and 1 are f0 and f1, respectively. The data

consist of pairs of density state estimates and we model the probabil-

ity of observing a given outcome, given this set of parameters. Thus,

the probabilities of observing a pair of estimates that are both 0, both

1, or 0 ⁄ 1 are:

P 0; 0ð Þ ¼ P2
00f0 þ P2

10f1 eqn 3a

P 1; 1ð Þ ¼ P2
11f1 þ P2

01f0 eqn 3b

P 0; 1ð Þ ¼ 2P00P01f0 þ 2P10P11f1 eqn 3c

For n pairs of observations (s1, s2), these probabilities can be used to

compute the log-likelihood of the data given the parameters:

L ¼
Xn

i¼1
lnP si; sj
� �

eqn 4

To generate maximum likelihood estimates of the parameters, we

note that P01 = 1 ) P00, P10 = 1 ) P11 and f0 = 1 ) f1. There are

therefore three parameters to be estimated (P01,P10 and f0). The three

parameters cannot be estimated simultaneously, however, as the

parameters are not uniquely identifiable. This is a well-known prob-

lem in the analysis of such data (e.g. Bross 1954; Royle & Link 2006)

and can be resolved only by providing additional information, typi-

cally the true value of f0. For our data, f0 is not easily estimated, how-

ever, as estimating the exact density state without error for each

quadrat within a field requires enormous time. Therefore, we made

two reasonable assumptions to fit this model.

To estimate the three parameters simultaneously, we first assumed

that in each pair of observations, at least one density assessment is

correct; as a consequence, if both observers provide the same estimate

of the state of the site, that must be the true state of the site. Alterna-

tively, this is equivalent to assuming that the values ofP01 and P10 are

low enough that simultaneous mis-estimation by both observers is

rare. To put this in context, if the misclassification rates were 10% for

both observers, simultaneous misclassification would affect only 1%

of quadrats.

We secondly assumed that the probability of classifying state i as

state j is the same as classifying state j as state i (i.e. Pij = Pji). This

assumption is justified on the grounds that (i) the underlying den-

sity variable is a continuous one, hence the decision whether to

assign state i or state j is likely to be arbitrary at the state bound-

ary; (ii) frequently, the classification error will result from small

variations in the GPS grid, which again will lead to arbitrary state

misclassification.

These assumptions allow simultaneous estimation of all three

parameters, as they rule out the possibility of high rates of correspon-

dence between observers resulting from simultaneous misclassifica-

tion. Under these assumptions, eqn (3) becomes:

P 0; 0ð Þ ¼ P2
00f0 eqn 5a

P 1; 1ð Þ ¼ P2
11f1 eqn 5b

P 0; 1ð Þ ¼ P00P01f0 þ P10p11f1 eqn 5c

where P00 = P11 and P01 = P10. The log-likelihood for the data

is then:

L¼n00 ln P2
00f0

� �
þn11 ln P2

11f1
� �

þn01 ln P00P01f0þP11P10f1ð Þ eqn6

This quantity was maximized numerically using the ‘optim’ routine in

R (R Development Core Team 2009), restricting the range of values

searched to between 0 and 1 for all three parameters.

As noted above, the observed frequencies of 0 s and 1 s are biased

relative to f0 and f1 as the observed frequency with which an observer

assigns density state zero is:

P 0ð Þ ¼ P00 f0 þ P10 f1 eqn 7

Equation (7) makes clear that the estimated frequency of state 0 is

dependent not only on the correct assignment of state 0, but also on

the incorrect assignment of state 1. This is important because if the

frequencies of the two states are very different, the observed frequen-

ciesmay be highly biased.

Analysis of replicated surveys – multi-state data

The analysis of misclassification rates in multi-state data is complex

(Royle & Link 2006). In the dataset we have, there are two observers

independently censusing the same field assigning from five density

states (zero, low,medium, high, very high).

To make the analysis tractable, we make the following simplifying

assumptions. First, it is assumed (as above) that at least one observer

classifies the state of each quadrat correctly (equivalent to assuming

that error rates are sufficiently low that double misclassification is

negligible). Second, we assume that errors of classification by each

observer are not more than one density state greater or less than the

true state. This assumption is justified because the observed difference

between observers was greater than one density state in only 27 out of

2661 quadrats (i.e. only 1%of cases). Third, we assume that the prob-

ability of misclassification of one state as another did not exceed 0Æ5:
although in the analyses reported below the estimated proportions

did not approach this level, we enforced this condition for computa-

tional simplicity to ensure that net error rates for each state did not

exceed 1. Finally, we assumed that the probability of classifying state

i as state j is the same as classifying state j as state i; this assumption

was required as the relatively small overall number of misclassifica-

tions (in total the observers classified 254 of the 2661 quadrats differ-

ently, �9%) made it impossible to distinguish these, as this typically

requires large number ofmisclassifications (see Collett 2003).

Following the same computational logic as described above, the

log-likelihood for the data is, where nij is the number of quadrats in

which the estimates of the two observers are different with one assign-

ing state i and the other assigning state j :

L ¼
X5

i¼1
nii ln P2

ii

� �
þ
X

i¼1
ni;iþ1 ln Pi;iþ1Pii fi þ Piþ1; iPiþ1; iþ1 fiþ1

� �

eqn 8

The complication in estimating the parameters of this model is that

there are a number of implicit constraints in operation. Specifically,

for each density state, the probability of correct assignment (Pii) and

the probabilities ofmisclassification to states j and k (Pij andPik) must

sum to 1 (Pii + Pij + Pik = 1); furthermore, the frequencies of the

four density states must all sum to one (f1 + f2 + f3 + f4 = 1). To

facilitate the estimation of the model parameters under these con-

straints, we re-parameterized the model. To do this, and given the

assumption outlined above that the probability of misclassification of

one state by another could not exceed 0Æ5, we replacedPii,Pij, andPik by:

Pii ¼ 1� Pij � Pik;Pij ¼
0�5 exp hij

� �

1þ exp hij
� � ;Pik ¼

0�5 exp hikð Þ
1þ exp hikð Þ eqn 9

and f1, f2, f3, f4 and f5 by:

From meso- to macroscale population dynamics 293

� 2010 The Authors. Methods in Ecology and Evolution � 2010 British Ecological Society, Methods in Ecology and Evolution, 2 289–302



f1¼
exp /1ð Þ

1þexp /1ð Þ
; f2¼ 1� f1ð Þ exp /2ð Þ

1þexp /2ð Þ
;

f3¼ 1� f1� f2ð Þ exp /3ð Þ
1þexp /3ð Þ

; f4¼ 1� f1� f2� f3ð Þ exp /4ð Þ
1þexp /4ð Þ

;

f5¼1� f1� f2� f3� f4 eqn10

The variables on the transformed scales are unbounded and not sub-

ject to any constraints, and there are eight free parameters to be esti-

mated (f1, f2, f3, f4, P12, P23, P34, and P45). We found that the

likelihood could not be reliably maximized using numerical methods

and therefore estimated the parameters using a Bayesian Markov

Chain Monte Carlo approach, assuming improper priors for the

parameters and using a Metropolis sampling algorithm (using the

MCMCmetrop1R function of the R package MCMCpack; see Bol-

ker (2008) for an application of this function under the assumption of

non-informative priors). This approach allowed us to obtain parame-

ter estimates as well as distributions for these estimates. We estimated

the parameters separately for each field and time period, comparing

observations for the same observer repeatedly estimating the density

state of each quadrat at different times, as well as different observers

estimating density states at the same time.

EFFECT OF MEASUREMENT ERROR ON TRANSIT ION

PROBABIL IT IES

It was impossible, within the time and resources available, to conduct

replicated surveys routinely in each year. However, if levels of mea-

surement error are relatively low and consistent between time periods,

observers and different locations, estimates of census error from the

trials designed to target different species and crops should prove ade-

quate to control for measurement error in subsequent analyses. We

used the data on A. myosuroides resurveyed in the same field in 2007

and again in 2008 to estimate state transition probabilities and to

assess the effects of estimation error on these.

In exploratory analyses, we contrasted several approaches, includ-

ing maximum likelihood estimation andMCMCmethods. We found

that of the methods we explored, the simulation-extrapolation

method (SIMEX; Stefanski & Cook 1995) yielded consistent and

unbiased parameter estimates with relatively little computational

effort. This approach has the following rationale: extra measurement

error is added to the observed data and the parameters of interest are

‘naı̈vely’ estimated in the data with added error. The systematic

change in the naı̈ve estimates of the parameters with changing levels

of error can be examined and extrapolated back to estimate the

parameters in the absence of error (Fig. 1 gives an example of this).

The specific method we used is termed misclassification SIMEX

(MC-SIMEX) and is formulated following Küchenhoff, Mwalili, &

Lesaffre (2006). If the misclassification matrix is termed E we define

Kk which is a transformation ofE by a scalar parameter k:

Ek ¼ CKkC�1 eqn 11

C is a matrix of eigenvectors of E, and K is a diagonal matrix of

eigenvalues. k is assumed to be greater than or equal to zero and in

the case that k = 0,Ek is an identity matrix, equivalent to amisclassi-

ficationmatrix in which there is no error. IfN is the true set of density

states andN
* is a misclassification ofN according to E, and ifN** is a

misclassification of N* by E
k, then it follows that N** is related to N

by the misclassification matrix Ek + 1. The simulation step works by

simulating added measurement error to the observed data N*, and

recording estimated ‘naı̈ve’ parameter values as k is increased. The

relationship between the naı̈ve parameter estimates and k is then

extrapolated back to a value of k = )1 to estimate the values of the

parameters in the absence of error. We used linear extrapolation of

the relationship between estimated transition probabilities and k for

values of k close to zero to generate theMC-SIMEX estimates.

We estimated transition probabilities and the effects of error on

these using a linear modelling approach. A GLM was used to relate

the density state (0 or 1, coded as a binary variable) at time t + 1 to

that at time t. A binomial error and logit linkwas assumed. The coeffi-

cients of the model were recorded, then the error in the data amplified

in the manner described above. Figure 1 shows how this is applied to

the model coefficients to generate corrected parameter estimates.

Note that this is a better approach than using the ‘naı̈ve’ observation

of the proportion making the transition between states, as the GLM

is fitted assuming a logit link and this ensures that fitted transitions lie

between 0 and 1.

To generate a distribution of parameter estimates, the dataset was

resampled with replacement 1000 times, and theMC-SIMEX applied

to each resampled dataset. The distribution of parameter estimates

was recorded to yield a sampling distribution about themean.

Results

Figure 2 shows some examples of the survey data from differ-

ent observers and at different times. It is apparent that the
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Fig. 1. An example of how misclassification SIMEX works. Data

assuming relative error of 1 are extrapolated by adding error in order

to generate a curve (solid line), and then simulated back to relative

error of 0 (dashed line) to calculate the correct parameter estimates.

(a) parameter measuring stasis in state 0; (b) parameter measuring

transition from state 0 to state 1. Note that the parameters are taken

from the GLM modelling the transition probability as a function of

previous state, and hence are measured on the logit scale of the linear

predictor.
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density-structured method captures the variability in weed

densities both within and between fields, and is also consistent

between observers and days.

COMPARISON OF APPROACHES

Counts of weed numbers within cells assigned to density states

showed high consistency (Fig. 3). For both A. myosuroides

andC. album, there is a clear and statistically highly significant

relationship between the assigned density state and the

measured density of plants. The density states perform well

at discriminating differences between the densities, with the

50% percentiles reasonably well separated, especially in

Alopecurus. Note that in each 20 · 20 m quadrat, the area

sampled for this analysis is only a fraction (6 m2) of the total

area (400 m2), so a large proportion of the plot-to-plot varia-

tion about themean for each state is likely to be sampling error

(i.e. error in the estimate of the plot mean resulting from

within-plot variability).

Most of the variation in density of A. myosuroides was the

consequence of variations in attributed density state between

quadrats (63%of deviance explained). A small proportion was

explained by variations fromfield to field (7Æ3%) and, although

statistically significant, only 9Æ9% of the variance in density

from quadrat to quadrat was attributable to the density sta-

te · field interaction (Table 2a).

In the case of C. album, analysis of the deviance indicated

that a large proportion of the variation in density fromquadrat

to quadrat (39Æ5%) was attributable to between field differ-

ences in mean density. A similar proportion (34%) was attrib-

uted to plot-to-plot variance in density resulting from

variations in density state, but little (4Æ8%) was estimated to be

attributable to the density state · field interaction, and statisti-

cally non-significant (Table 2b).

QUANTIF ICATION OF ERROR

The parameter estimates and (mis)classification rates returned

by the Bayesian MCMC approach were generally narrowly

distributed around the mean (for an example of the distribu-

tion of estimates, see Fig. 4).

The weed presence ⁄absence surveys in winter wheat, wild

oats and barley indicated that there was considerable corre-

spondence between the density states estimated by indepen-

dent observers (Fig. 5). Confidence limits for all

comparisons were narrow, and the probability of correct

classification and estimates of frequency were high and con-

sistent between census times. For example, the correct

assignment probability was estimated to be 0Æ93 for A. myos-

uroides in winter wheat, such that the error rate is only

�7%. The estimated frequency of state 1 (f0) was 0Æ05, which
is considerably lower than the estimate of 0Æ11 from the raw

data. This potential for such differences was pointed out

above (eqn 7).

We similarly found that the estimated rates of correct classi-

ficationwere high in the data on fields surveyed in whichmulti-

ple density states were present (Fig. 6). These were mostly

>0Æ80 (except where small sample sizes prohibited accurate

estimation of the values, for example for A. myosuroides in

beans). This high rate of correct classification was consistent

within and between observers and census days: confidence

intervals for each of the four comparisons (observer 1 vs.

observer 2 on both days 1 and 2; observer 1 on day 1 vs. 2, and

observer 2 on day 1 vs. 2) were overlapping in almost all com-

parisons. The probability of misclassification was low, and

appeared to increase slightly at higher densities. However, the

frequency of higher densities was lower. Consequently, we con-

clude that the density state estimates are repeatable and

robust.

ESTIMATING TRANSIT ION PROBABIL IT IES

The estimates of census error are important in generating

robust estimates of transition probabilities in density struc-

tured models. In the analysis of the data on A. myosuroides,

the MC-SIMEX indicates that there is bias in the estimates of

the transition probabilities resulting from measurement error

(Fig. 7). Without accounting for measurement error, the esti-

mates of the transition probabilities are t00 = 0Æ613 and

t11 = 0Æ547. In comparison, based on a linear extrapolation

the MC-SIMEX estimates are t00 = 0Æ631 and t11 = 0Æ622.

Observer A Observer B

Day 1 Day 2 Day 1 Day 2

F
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F
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F
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F
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F
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Fig. 2. Example data showing the distribution of weeds in five fields

in Lincolnshire for two observers on two different days. Fields 1–3

show Chenopodium album in sugar beet, field 4 shows Alopecurus

myosuroides in winter wheat, and field 5 showsA. myosuroides in field

beans. Increasing darkness of colour indicates increasing density of

weed per 20 · 20 m quadrat, from 0 to very high density. White

quadrats were not surveyed.

From meso- to macroscale population dynamics 295

� 2010 The Authors. Methods in Ecology and Evolution � 2010 British Ecological Society, Methods in Ecology and Evolution, 2 289–302



There would therefore appear to be an appreciable bias in the

estimate ofP11. In this example, the reason for this is very likely

to be the low frequency of state 1 in 2007. The number of quad-

rats observed to be in state 1 in 2007 was only 8Æ8% (observer 1)

or 11Æ3% (observer 2), with theMC-SIMEX of f1 being 0Æ03.
Consequently, the estimate of t11 has an extremely wide

bootstrap variance (Fig. 7b) when compared with the esti-

mates of the other parameters, which are very well estimated

(Fig. 7).

Discussion

Models are commonly used to investigate the processes that

govern plant population dynamics. They are necessary to pre-

dict how populations will respond to perturbations such as cli-

mate change, introductions to new habitats, and to

management (Bolker 2008). In this article, we have described

and tested a new method for measuring and modelling plant

populations. Estimates of population density obtained using

this approach are robust and repeatable, and we have demon-

strated that it is straightforward to quantify census error.

Finally, we are able to use the approach to capture large-scale

variation in population density successfully and discuss below

how the approach can be developed.

Most studies of plant population dynamics use small-scale

mechanistic demographic models that are costly to parameter-

ize and prove difficult when attempting to account for mea-

surement and observer error (Freckleton et al. 2008). We have

described here a phenomenological model that is based

entirely on estimates of plant density and makes no assump-

tions about the underlying processes. Our survey can pick up

within-field variation in weed plant density (Fig. 2), and esti-

mates of plant density are robust and accurately reflect the

true density of plants in small quadrats (Fig. 3). Independent

observers, although differing in their estimates, can provide

comparable data on plant density with an error rate <10%

(Figs. 5 and 6). Furthermore, using the density-state

approach, it is easy to model observer error and correct esti-

mates of the true density frequency using MC-SIMEX

(Figs. 1, 5 and 6).

ADVANTAGES OF THE NEW METHOD

The density-structured approach offers several benefits in

terms of data collection and analysis: (i) data collection is

simpler than traditional techniques and is therefore more
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Fig. 3. Actual densities of two weed species in 1 m2 quadrats of esti-

mated density states in arable crops, visualized using box and whisker

plots (minimum, lower quartile, median, upper quartile and maxi-

mum data values shown). Six 1 m2 plots were randomly positioned in

each of 255 20 · 20 m quadrats in 11 fields (Alopecurus myosuroides)

and 75 quadrats in six fields (Chenopodium album). Box colours corre-

spond to density states in Fig. 2.

Table 2. Variation in the density of (a) Alopecurus myosuroides,

and (b) Chenopodium album, attributable to among-quadrat, among-

field, and density state-field interaction terms. Results from

generalized linear models with quasipoisson error and a log-link

function

d.f. Deviance

Residual

d.f.

Residual

deviance P

(a)

Null 254 6136Æ8
Field 10 448Æ2 244 5688Æ6 ***

Density state 1 3854Æ9 243 1833Æ7 ***

Field · density

state

37 614 206 1219Æ7 ***

(b)

Null 74 1358Æ32
Field 5 536Æ37 69 821Æ95 ***

Density state 1 461Æ67 68 360Æ28 ***

Field · density

state

12 65Æ82 56 294Æ46

Significance of model terms indicated by asterisks: ***P < 0Æ001
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rapid; (ii) modelling techniques are robust and predictive;

(iii) we can account for within- and between-observer errors;

(iv) the models are phenomenological and make no assump-

tions about biological processes; (v) because of the speed

of data collection, the techniques can be applied to prob-

lems at very large spatial scales that remained previously

intractable.

The data collected using our techniques are substantially

different from standard counts of plant densities. Density-

structured models are much simpler, each sample unit being

assigned a state from an ordered list of density categories. In

our example, each quadrat was assigned a density state from

one of absent, low, medium, high, and very high. In our data-

set, the range of weed densities corresponding to these density

states were derived from previous count data, and as such,

accurately reflected realistic ranges of densities. As individual

plant count data are not required, data collection can be very

rapid and large amounts of data over large spatial scales can be

collected in a very short time. In the example discussed here,

two field workers sampled about 4 ha in each of over 500 fields

in 49 farms over 5–6 weeks. This amount of data and spatial

extent is far in excess of most individual-based population

studies.

We have shown above and elsewhere that the models are

robust, accurate and reflect biological processes (Freckleton

et al. 2011) and we can easily account for observer error

(see below). Density-structured models are relatively simple

compared with other individual-based models. As the
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Fig. 4. Parameter estimates and (mis)classification rates: examples of distributions of parameter estimates and (mis)classification rates forAlope-

curus myosuroides in a wheat field returned by the Bayesian MCMC approach. Frequency distributions of probabilities of classifying state 1 as

state 2 and vice versa (a), state 2 as state 3 (b), and state 3 as state 4 (c). Probability distributions of frequency estimates for density state 1 to state

4 (d: noweeds; e: lowweeds; f: mediumweeds; g: high weeds).
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Fig. 5. Parameter estimates and probability or binomial state densitymodels for two crops and two weed species (absent, 0; low, 1). Panes in each

plot are divided by dashed lines: Top pane in each graphic shows estimates of frequency of each state.Middle pane shows the estimated probabil-

ity of misclassification between observers or survey time. Bottom pane shows estimated probability of correct classification. Two observers

repeatedmost surveys on 2 days, coded by colour (e.g. yellow = intra-observer error for observer 2; see legend). Fig. S3 is a grayscale version of

this figure.
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density-structured modelling approach is phenomenological

(modelling changes in observed weed densities), rather than

mechanistic (relying on estimates of germination, survival,

seed production to predict weed density), it is very easy to

include other factors as explanatory variables of weed den-

sity, or include weed density as an explanatory variable itself,

in other models. For example, one could generate aggregate

results at various spatial scales: in our example, at the quad-

rat, field, farm, county and country scales. Furthermore, this

hierarchical structure of the data leads very easily to analyses
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Fig. 6. Parameter estimates and probability (± 95%CI) of multi-state density state models for five density states (absent, 0; low, L; medium,M;

high, H; very high, V), two observers and two observation times. Panes in each plot are divided by dashed lines: Top pane shows estimates of

frequency of each state.Middle pane shows the estimated probability of misclassification between observers or survey time. Bottom pane shows

estimated probability of correct classification. Two observers repeated most surveys on 2 days, coded by colour (e.g. yellow = intra-observer

error for observer 2; see legend). Fig. S4 is a grayscale version of this figure.
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of where most variation occurs. In our data set, for instance,

we are actively examining how within-field variation com-

pares with among-field, -farm, and -county variation in weed

dynamics.

ACCOUNTING FOR OBSERVER ERROR AND BIAS

Few studies characterize variance in measurements resulting

from observer error, although the issue has been understood

for many years (Smith 1944). Of those studies that have

compared the data collected by two or more independent

observers, significant amounts of the variation in the data

have been found to be caused by variation among observers

(Leps & Hadincova 1992; Bergstedt, Westerberg, & Milberg

2009). This is especially true in studies that estimate vegeta-

tion cover (Sykes, Horrill, & Mountford 1983; Kennedy &

Addison 1987; Vittoz & Guisan 2007; Milberg et al. 2008).

Studies that record presence ⁄absence of species tend to be

less prone to observer error (Kirby et al. 1986; Ringvall et al.

2005).

Removing observer error in the collection process is virtually

impossible. Given this, it is important to quantify it and

account for error in subsequent data analysis. Quantification

of observer error is a vital aspect of any biological monitoring

study involving multiple researchers, and accounting for it will

increase the utility of such long-term monitoring data (Legg &

Nagy 2006). We showed that observer error has a significant

but small effect on parameter estimates, and that multiple

observers should be used to parameterize population models

correctly.

INTEGRATION INTO MULTI -D ISCIPL INARY RESEARCH

PROGRAMMES

As density-structured models are not complex, including cova-

riates or linking to other models is simple. This is important

given the current emphasis on interdisciplinary studies and the

inclusion of the anthropogenic interactions with the biological

world. Efforts to link ecology, economics and sociology are

often frustrated by a lack of common units of measurement or

overly complex models in all these three spheres (Cooke et al.

2009). In this article, we have provided a simple and robust

ecological model that can be readily linked to economic and

sociological models with no loss of ecological information.

With regards to this, we are currently linking our model with

an economicmodel of farms, examining the feedbacks between

weeds and farmmanagement, and testing whether farmer pref-

erences and behaviour determine weed dynamics in arable

fields.

L IMITATIONS OF THE NEW METHOD

We acknowledge that our new method could initially appear

unlikely to capture the dynamics of populations and may

seem somewhat coarse. However, we have demonstrated here

and elsewhere (Freckleton et al. 2011) that density-state

models are accurate, robust and do capture population

dynamics exceedingly well, with little loss of information.

Given this evidence, we now address several apparent limita-

tions to the new method we presented above, specifically

that: (i) we do not make accurate counts of the number of

individuals in populations; (ii) sample locations must be the

same for every sampling time; (iii) it is difficult to apply the

method to non-sessile organisms; (iv) the scale of the sam-

pling quadrats and density states ideally must reflect the scale

of biological processes under study; and (v) there are inher-

ent issues of spatial autocorrelation between samples. These

are not necessarily disadvantages of our approach, and

demographic or other population models may be subject to

similar issues.

In response to these perceived criticisms, first, we have dem-

onstrated that accurate and robust models of population

dynamics can be made using density-structured models that

reflect the biology of the study organisms (Freckleton et al.

2011). Furthermore, estimates of population density can be

returned from density-state models (Freckleton et al. 2011).

Estimating density states allows for the rapid collection of large

amounts of field data, which outweighs the small loss of

resolution.

Second, permanent sample locations need to be identified to

construct density-state models. As ‘patch’ or quadrat is the

sample unit, rather than the individual, quadrats need to be

easily relocated at each sampling time. It is usually much easier

to relocate quadrats than individuals, and although there will

be some error in this, especially if usingGPS, this error can also

be quantified and accounted for (see above). Alternatively,

patch locations could be identified using physical features (e.g.

a forest gap, or a lake).
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Fig. 7. Distributions of transition probabilities and frequencies of

states from the MCSIMEX model, correcting for observer error. (a)

Frequency distribution of bootstrapped transition probabilities for

quadrats remaining in density state 0 in 2007–2008. (b) Frequency

distribution of bootstrapped transition probabilities for quadrats

remaining in density state 1 in 2007–2008. (c) Frequency distribution

of estimates of density-state 0 in 2007. (d) Frequency distribution of

estimates of density-state 0 in 2008.
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Third, the method is mostly applicable to sessile organisms

such as plants.Motile species, such as birds ormammals, could

be modelled in this way if the sample quadrat was sufficiently

large and the animals within easily quantified. Thus, aerial

photographs of bird flocks, tracks, scat or other signs of animal

presence could be modelled using density-state models. We

have shown that bird populations can also be easily modelled

in this way (R. Freckleton&D.Noble, unpublished data).

Fourth, the scale of the sample quadrat should match the

scale of the organism and process under study. This will proba-

bly necessitate careful preliminary thought and work, but no

more so than should precede any scientific study. In our case,

we were able to take advantage of previous large-scale surveys

to design our survey.

Fifth, spatial autocorrelation between density states of adja-

cent patches is likely, and can be addressed if required. We are

currently working on modelling the spatial autocorrelation in

our study system, and methods for dealing with spatial auto-

correlation in general are well-established (Koenig 1999; Lich-

stein et al. 2002). The modelling framework can take the form

of generalized linear models (Yee & Mackenzie 2002; Yee

2010), so it is easy to include covariates. In our case, with con-

tiguous quadrats and spatially located fields and farms, auto-

correlation can be easily modelled using freely available

software (e.g. Rangel, Diniz-Filho, &Bini 2010).

Finally, the method described in this paper deals only with

low-statured plants that are visible from standing human

observers. There are many biological problems that cannot be

addressed at this scale, but for which density-structuredmodels

are appropriate and that will require other forms of data col-

lection (see below).

FURTHER APPLICATIONS OF DENSITY-STRUCTURED

MODELS

Density-structured models are applicable to a wide variety of

ecological questions, and should revolutionize long-termmon-

itoring programmes and the study of population dynamics.

Quadrat size can be varied to accommodate any system of

study, from global grids of longitude and latitude, to hectares

of forest or quadrats of several centimetres for studying lichen

recruitment. Quadrats could also be very different entities from

those described in this study, including the water-filled floral

bracts ofHeliconia plants, bat roosting sites, networks of lakes

or pools, and even countries or similar geo-political divisions.

The field methods used to collect density estimates in these

diverse systems could include satellite images, reflectance spec-

tra, aerial photographs, animal tracks, and even vocalization

frequency. Our density-structured approach is particularly

suited to long-term monitoring programmes, especially of

organisms of conservation interest, where time and resources

may be scarce. For reasons of the problems associated with

gathering accurate information to parameterize mechanistic

models discussed above, whereby small errors in parameter

estimates can lead to wide variation in predictions, density-

structured models could be used to monitor population

dynamics very robustly. This is of great importance when

considering rare species, where the probability of unseen indi-

viduals may be high. Accounting for observer error in the

monitoring of rare species may be of critical importance for

determining population success and assignation of categories

of risk and rarity (e.g. CITES).

Density-structured models can also radically alter the way

we monitor species’ populations in response to large-scale glo-

bal factors, such as changes in climate. Resources for science

are always in short supply and limit the scope of many studies.

However, using density estimates, many quadrats can be

surveyed in a short span of time. Therefore, a large-scale net-

work of quadrats spanning the full range of climate variables

and ⁄or the full extent of species ranges can be easily moni-

tored. Variation in density as a function of differences in cli-

mate can be modelled and used to predict and monitor species

responses to climate change.

Finally, this article represents only one way in which

density-structured models could be developed. We presented a

linear density-structured model framework and parameterized

it phenomenologically. The more general idea of density

structuring is not limited to linear models, nor are density-

structured models necessarily parameterized phenomenologi-

cally. Taylor & Hastings (2004) used mechanistic parameters

(vegetative growth rate) and a simulation model to estimate

transition rates. Applying density-structured models in this

case, or extending them to animal rather than plant species,

might not be as easy to parameterize phenomenologically.

Conclusions

We have described a wholly integrated field and analytical

method that is robust, accurate and predictive. Data analysis is

computationally and analytically non-intensive, and allows for

the estimation and inclusion of observer error. Covariates can

bemodelled using an extension of the generalized linearmodel-

ling framework and density-statemodelsmake no assumptions

about the underlying biological mechanisms. Our new density-

structured approach is ideally suited to addressing many

urgent questions in ecology and should revolutionize the

design of conservation programmes and long-termmonitoring

programmes.
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