

Matrix

	[,1]	[,2]	[,3]	[,4]
[1,]	60	9	35	63
[2,]	45	75	3	40
[3,]	82	64	14	15
[4,]	12	7	52	72
[5,]	4	81	18	91
[6,]	95	59	100	74
[7,]	31	79	27	8
[8,]	46	30	39	80
[9,]	89	76	38	78
10,]	67	32	51	25
	·	· ·		·

Data Frame

	state	sex	diag	death
1	NSW	M	10905	11081
2	NSW	M	11029	11096
3	NSW	M	9551	9983
4	NSW	M	9577	9654
5	NSW	M	10015	10290
6	NSW	M	9971	10344
7	NSW	M	10746	11135
8	NSW	M	10042	11069
9	NSW	M.	10464	10956

Matrix

	[,1]	[,2]	[,3]	[,4]
[1,]	60	9	35	63
[2,]	45	75	3	40
[3,]	82	64	14	15
[4,]	12	7	52	72
[5,]	4	81	18	91
[6,]	95	59	100	74
[7,]	31	79	27	8
[8,]	46	30	39	80
[9,]	89	76	38	78
10,]	67	32	51	25

Data Frame

	state	sex	diag	death
1	NSW	M	10905	11081
2	NSW	M	11029	11096
3	NSW	M	9551	9983
4	NSW	M	9577	9654
5	NSW	M	10015	10290
6	NSW	M	9971	10344
7	NSW	M	10746	11135
8	NSW	M	10042	11069
9	NSW	M.	10464	10956

Used as your primary data object. Essentially a spreadsheet.

Matrix

	[,1]	[,2]	[,3]	[,4]
[1,]	60	9	35	63
[2,]	45	75	3	40
[3,]	82	64	14	15
[4,]	12	7	52	72
[5,]	4	81	18	91
[6,]	95	59	100	74
[7,]	31	79	27	8
[8,]	46	30	39	80
[9,]	89	76	38	78
10,]	67	32	51	25

Used frequently in mathematical applications, models

More computationally efficient

Data Frame

	state	sex	diag	death
1	NSW	M	10905	11081
2	NSW	M	11029	11096
3	NSW	M	9551	9983
4	NSW	M	9577	9654
5	NSW	M	10015	10290
6	NSW	M	9971	10344
7	NSW	M	10746	11135
8	NSW	M	10042	11069
9	NSW	M	10464	10956
	·			·

Used as your primary data object. Essentially a spreadsheet.

Must be a multiple of your data length

To create a matrix():

- Requires data
- Number of rows or columns

```
> mat1 <- matrix(1:25, nrow = 5)
> mat1
     [,1] [,2] [,3] [,4] [,5]
[1,]
                  11
                        16
                             21
[2,]
                  12
                        17
[3,]
                  13
                        18
                             23
[4,]
                  14
                        19
                             24
[5,]
             10
                  15
                             25
```

Must be a multiple of your data length

To create a matrix():

- Requires data
- Number of rows or columns

Want to put values by rows instead of columns?

• byrow = TRUE

```
> mat1 <- matrix(1:25, nrow = 5)
> mat1
     [,1] [,2] [,3] [,4] [,5]
[1,]
                  11
                        16
                             21
[2,]
                  12
                        17
                  13
[3,]
                        18
                             23
[4,]
                  14
                        19
                             24
             10
                             25
[5,]
```

Labeling your rows and columns colnames()

Labeling your rows and columns

colnames()

rownames()

```
> rownames(mat1) <- c("very", "very", "very", "interesting", "names")
> mat1
            this is a 5x5 matrix
               1 6 11
                       16
                               21
very
               2 7 12
very
               3 8 13
                               23
                       18
very
interesting
               4 9 14 19
                               24
               5 10 15
                               25
names
```

Piece together a matrix or add to one:

rbind() and cbind()

```
> x < - sample(1:100, 5)
> y <- sample(1:100, 5)
> z <- sample(1:100, 5)
[1] 55 86 54 10 37
[1] 67 75 14 13 29
[1] 44 31 97 84 99
> mat1 <- cbind(x,y,z)</pre>
> mat1
    55 67 44
     86 75 31
     54 14 97
    10 13 84
    37 29 99
```

Piece together a matrix or add to one:

• rbind() and cbind()

```
> x <- sample(1:100, 5)
> y <- sample(1:100, 5)
> z <- sample(1:100, 5)
[1] 55 86 54 10 37
[1] 67 75 14 13 29
[1] 44 31 97 84 99
> mat1 <- cbind(x,y,z)</pre>
> mat1
    55 67 44
     86 75 31
    54 14 97
  ,] 10 13 84
    37 29 99
```

Like a matrix, but can have any class of data in a given column

- Because each column is essentially a vector, the class of data must be consistent in each column

	Site	plot	Posicion	Especie	Census	a	b
1	PLR	1	10	PITTTR	5	0.00600	1.09100
2	PLR	1	11	VOCHFE	2	0.00602	0.11924
3	PLR	1	12	TAB1RO	2	0.00640	-0.25360
4	PLR	1	13	VIROSU	4	0.00630	-0.42860
5	PLR	1	14	PROTTE	5	0.00570	-1.76940
6	PLR	1	15	PROTTE	5	0.00570	-1.76940

Create a data.frame()

Provide objects to turn into columns

```
data.frame(height = sample(150:200,5),
           weight = sample(110:250, 5),
           response = c('yes','yes','no','yes','no')
height weight response
   188
          200
                   yes
   168
         173
                   yes
  182 232
                    no
  191
         175
                   yes
   200
          246
                    no
```

Most functions that work with matrices work with data frames

• rownames, colnames, rbind, cbind etc...

Use dim() to get dimensions, and str() to summarize your data frame

```
dat
  height weight response
     157
            126
                      yes
2
     171
            161
                      yes
            249
     150
                       no
     178
            131
                      yes
     197
            181
                       no
```

```
> dim(dat)
[1] 5 3
> str(dat)
'data.frame': 5 obs. of 3 variables:
   $ height : int 157 171 150 178 197
   $ weight : int 126 161 249 131 181
   $ response: Factor w/ 2 levels "no", "yes": 2 2 1 2 1
```

Most functions that work with matrices work with data frames

• rownames, colnames, rbind, cbind etc...

Use dim() to get dimensions, and str() to summarize your data frame

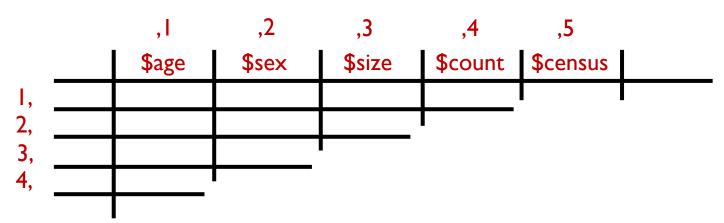
```
dat
  height weight response
     157
            126
                      yes
2
     171
             161
                      yes
             249
     150
                        no
     178
            131
                      yes
     197
             181
                        no
```

Row, Column

```
> dim(dat)
[1] 5 3
> str(dat)
'data.frame': 5 obs. of 3 variables:
    $ height : int 157 171 150 178 197
    $ weight : int 126 161 249 131 181
    $ response: Factor w/ 2 levels "no", "yes": 2 2 1 2 1
```

Most functions that work with matrices work with data frames

• rownames, colnames, rbind, cbind etc...

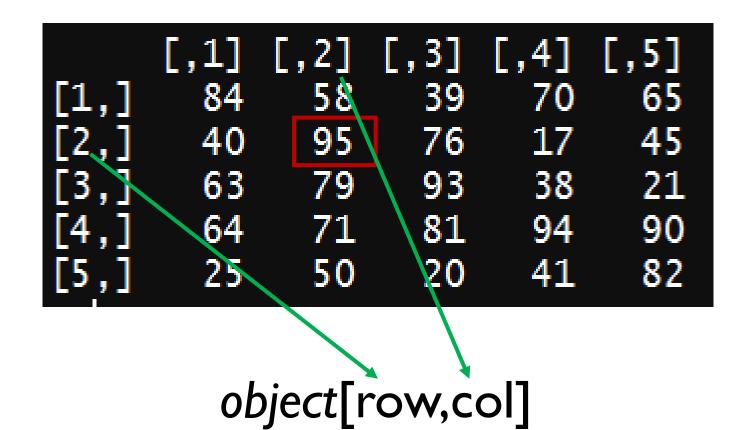

Use dim() to get dimensions, and str() to summarize your data frame

Column name: data class

```
dat
  height weight response
     157
             126
                       yes
     171
             161
                       yes
3
             249
     150
                        no
     178
             131
                       yes
     197
             181
                        no
```

```
> dim(dat)
[1] 5 3
> str(dat)
'data.frame': 5 obs. of 3 variables:
$ height : int 1:7 171 150 178 197
$ weight : int 1:6 161 249 131 181
$ response: Factor w/ 2 levels "no", "yes": 2 2 1 2 1
```

Subsetting 2-Dimensional Objects


```
[,1] [,2] [,3] [,4] [,5]
                   70
 84
       58
             39
                         65
 40
       95
             76
                         45
  63
       79
             93
                   38
                         21
 64
       71
             81
                   94
                         90
 25
       50
             20
                   41
                         82
```

object[row,col]

```
[,1] [,2] [,3] [,4] [,5]
                   70
 84
       58
             39
                         65
 40
       95
             76
                         45
  63
       79
             93
                   38
                         21
  64
       71
             81
                   94
                         90
 25
       50
             20
                   41
                         82
```

object[row,col]

```
[,1] [,2] [,3] [,4] [,5]
       58
                   70
             39
                         65
       95
 40
             76
                         45
       79
  63
             93
                   38
                         21
  64
       71
             81
                   94
                         90
       50
             20
                   41
                         82
  object[row,col]
```


single value, vector, or nothing

```
> mat1[2,2]
[1] 95
```

```
[,1] [,2] [,3] [,4] [,5]
[1,]
        84
              58
                   39
                         70
                               65
             95
       40
                   76
                         17
                               45
             79
        63
                   93
                         38
                               21
        64
                         94
                               90
             71
                   81
        25
              50
                   20
                         41
                               82
```

```
[,1] [,2] [,3] [,4] [,5]
             58
                   39
                         70
[1,]
       84
                               65
             95
[2,]
       40
                   76
                         17
                               45
             79
        63
                   93
                         38
                               21
        64
             71
                               90
                   81
                         94
       25
             50
                   20
                         41
                               82
```

```
> mat1[2,2]
[1] 95
```

```
> mat1[2:4,2]
[1] 95 79 71
```

```
[,2] [,3] [,4]
[1,]
        84
              58
                    39
                          70
                                65
                          17
              95
[2,]
        40
                    76
                                45
        63
              79
                    93
                          38
                                21
                                90
        64
              71
                          94
                    81
        25
              50
                    20
                          41
                                82
```

```
> mat1[2,2]
[1] 95
```

```
> mat1[2:4,2]
[1] 95 79 71
```

```
> mat1[2:4,2:4]
      [,1] [,2] [,3]
[1,] 95 76 17
[2,] 79 93 38
[3,] 71 81 94
```

```
[,2] [,3] [,4]
              58
[1,]
        84
                    39
                          70
                                65
              95
[2,]
        40
                    76
                          17
                                45
              79
        63
                    93
                          38
                                21
              71
        64
                                90
                    81
                          94
        25
              50
                    20
                          41
                                82
```

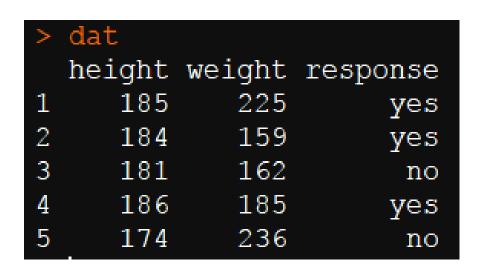
```
> mat1[2,2]
[1] 95
```

```
> mat1[2:4,2]
[1] 95 79 71
```

```
> mat1[2:4,2:4]
        [,1] [,2] [,3]
[1,] 95 76 17
[2,] 79 93 38
[3,] 71 81 94
```

```
> mat1[ ,2]
[1] 58 95 79 71 50
```

```
[,1] [,2] [,3] [,4] [,5]
[1,]
        84
              58
                    39
                          70
                                65
        40
[2,]
              95
                    76
                                45
        63
              79
                    93
                          38
                                21
        64
                                90
              71
                    81
                          94
        25
              50
                    20
                          41
                                82
```


```
> mat1[2,2]
[1] 95
```

```
> mat1[2:4,2]
[1] 95 79 71
```

```
> mat1[2:4,2:4]
      [,1] [,2] [,3]
[1,] 95 76 17
[2,] 79 93 38
[3,] 71 81 94
```

```
> mat1[ ,2]
[1] 58 95 79 71 50
```

```
> mat1[3, ]
[1] 63 79 93 38 21
```


Data frames can be subset the same way as matrices

We also have a special way to subset data frames

• The \$ operator

>	dat		
	height	weight	response
1	185	225	yes
2	184	159	yes
3	181	162	no
4	186	185	yes
5	. 174	236	no

Data frames can be subset the same way as matrices

We also have a special way to subset data frames

• The \$ operator

```
> str(dat)
'data.frame': 5 obs. of 3 variables:
$ height : int 185 184 181 186 174
$ weight : int 225 159 162 185 236
$ response: Factor w/ 2 levels "no", "yes": 2 2 1 2 1
```

>	dat		
	height	weight	response
1	185	225	yes
2	184	159	yes
3	181	162	no
4	186	185	yes
5	174	236	no

```
> dat$height
[1] 185 184 181 186 174
```

>	dat		
	height	weight	response
1	185	225	yes
2	184	159	yes
3	181	162	no
4	186	185	yes
5	. 174	236	no

```
> dat$height
[1] 185 184 181 186 174
```

```
> dat$weight
[1] 225 159 162 185 236
```

```
> dat
 height weight response
           225
    185
                    yes
2
    184 159
                    yes
    181 162
                     no
4
    186
          185
                    yes
5
           236
    174
                     no
```

```
> dat$height
[1] 185 184 181 186 174
```

```
> dat$weight
[1] 225 159 162 185 236
```

```
> dat$response
[1] yes yes no yes no
Levels: no yes
```

>	dat		
	height	weight	response
1	185	225	yes
2	184	159	yes
3	181	162	no
4	186	185	yes
5	. 174	236	no

>	dat		
	height	weight	response
1	185	225	yes
2	184	159	yes
3	181	162	no
4	186	185	yes
5	. 174	236	no

>	dat[dat	t\$height	t > 180,]
	height	weight	response
1	185	225	yes
2	184	159	yes
3	181	162	no
4	186	185	yes

>	dat		
	height	weight	response
1	185	225	yes
2	184	159	yes
3	181	162	no
4	186	185	yes
5	. 174	236	no

```
> dat[dat$height > 180,]
height weight response
1 185 225 yes
2 184 159 yes
3 181 162 no
4 186 185 yes
```

```
dat
  height weight response
             225
     185
                       yes
2
     184
             159
                       yes
             162
     181
                        no
4
     186
             185
                       yes
5
             236
     174
                        no
```

```
> dat[dat$response == "yes",]
  height weight response
1   185   225    yes
2   184   159    yes
4   186   185    yes
```

```
> dat$weight[dat$response == "no"]
[1] 162 236
```

```
dat
  height weight response
             225
     185
                       yes
2
     184
             159
                       yes
             162
     181
                        no
4
     186
             185
                       yes
5
             236
     174
                        no
```

```
> dat[dat$response == "yes",]
height weight response
1   185   225   yes
2   184   159   yes
4   186   185   yes
```

```
> dat$weight[dat$response == "no"]
[1] 162 236
```

Applications?

	height	weight	response
1	197	162	yes
2	175	235	yes
3	185	203	yes
4	194	166	yes
5	197	235	no
6	158	113	yes
7	181	144	yes
8	169	153	no
9	188	241	yes
10	177	205	yes
11	184	123	no
12	176	144	no
13	170	133	no
14	160	141	yes
15	161	183	yes

Comparison of height between yes and no responses

• T-Test

	height	weight	response
1	197	162	yes
2	175	235	yes
3	185	203	yes
4	194	166	yes
5	197	235	no
6	158	113	yes
7	181	144	yes
8	169	153	no
9	188	241	yes
10	177	205	yes
11	184	123	no
12	176	144	no
13	170	133	no
14	160	141	yes
15	161	183	yes

Comparison of height between yes and no responses

• T-Test

	height	weight	response
1	197	162	yes
2	175	235	yes
3	185	203	yes
4	194	166	yes
5	197	235	no
6	158	113	yes
7	181	144	yes
8	169	153	no
9	188	241	yes
10	177	205	yes
11	184	123	no
12	176	144	no
13	170	133	no
14	160	141	yes
15	161	183	yes

Comparison of height between yes and no responses

• T-Test

```
t.test(x = dat$height[dat$response == "yes"],
    y = dat$height[dat$response == "no"])
```

```
Welch Two Sample t-test
data: dat$height[dat$response == "yes"] and dat$height[dat$response == "no"]
t = 0.58311, df = 25.845, p-value = 0.5649
```